cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A282785 Number of n X 2 0..1 arrays with no 1 equal to more than one of its king-move neighbors, with the exception of exactly one element.

Original entry on oeis.org

0, 0, 8, 16, 72, 240, 736, 2352, 7128, 21424, 63768, 187424, 547136, 1586016, 4570280, 13105488, 37414632, 106404944, 301580704, 852159120, 2401326712, 6750087408, 18931901880, 52989773184, 148039566336, 412873929408, 1149659579720
Offset: 1

Views

Author

R. H. Hardin, Feb 21 2017

Keywords

Examples

			Some solutions for n=4:
..0..1. .1..0. .0..0. .0..0. .0..0. .0..0. .1..0. .1..0. .0..0. .0..1
..1..0. .0..1. .1..0. .0..1. .0..1. .1..0. .1..0. .0..1. .1..0. .1..0
..1..0. .1..0. .0..1. .1..0. .1..0. .1..0. .1..0. .0..1. .0..1. .0..1
..0..0. .0..0. .0..1. .1..0. .0..1. .1..0. .0..0. .0..0. .1..0. .0..0
		

Crossrefs

Column 2 of A282791.

Formula

Empirical: a(n) = 2*a(n-1) + 5*a(n-2) +2*a(n-3) - 17*a(n-4) - 24*a(n-5) - 16*a(n-6).
Empirical g.f.: 8*x^3 / (1 - x - 3*x^2 - 4*x^3)^2. - Colin Barker, Feb 21 2019