A282785 Number of n X 2 0..1 arrays with no 1 equal to more than one of its king-move neighbors, with the exception of exactly one element.
0, 0, 8, 16, 72, 240, 736, 2352, 7128, 21424, 63768, 187424, 547136, 1586016, 4570280, 13105488, 37414632, 106404944, 301580704, 852159120, 2401326712, 6750087408, 18931901880, 52989773184, 148039566336, 412873929408, 1149659579720
Offset: 1
Keywords
Examples
Some solutions for n=4: ..0..1. .1..0. .0..0. .0..0. .0..0. .0..0. .1..0. .1..0. .0..0. .0..1 ..1..0. .0..1. .1..0. .0..1. .0..1. .1..0. .1..0. .0..1. .1..0. .1..0 ..1..0. .1..0. .0..1. .1..0. .1..0. .1..0. .1..0. .0..1. .0..1. .0..1 ..0..0. .0..0. .0..1. .1..0. .0..1. .1..0. .0..0. .0..0. .1..0. .0..0
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Crossrefs
Column 2 of A282791.
Formula
Empirical: a(n) = 2*a(n-1) + 5*a(n-2) +2*a(n-3) - 17*a(n-4) - 24*a(n-5) - 16*a(n-6).
Empirical g.f.: 8*x^3 / (1 - x - 3*x^2 - 4*x^3)^2. - Colin Barker, Feb 21 2019