A282786 Number of nX3 0..1 arrays with no 1 equal to more than one of its king-move neighbors, with the exception of exactly one element.
1, 8, 73, 318, 1747, 8216, 38027, 173722, 773529, 3412416, 14880845, 64319686, 276057515, 1177345064, 4994757435, 21091941082, 88706514017, 371741444080, 1552891025645, 6468454612966, 26874623008899, 111396556833528
Offset: 1
Keywords
Examples
Some solutions for n=4 ..0..1..1. .0..1..1. .0..1..0. .1..1..1. .1..0..0. .0..0..1. .1..0..1 ..0..0..0. .1..0..0. .1..0..0. .0..0..0. .0..0..1. .0..0..0. .0..0..1 ..0..0..0. .0..0..1. .0..1..0. .0..0..1. .1..1..0. .1..1..1. .0..1..0 ..1..1..1. .0..0..1. .0..0..0. .1..0..1. .0..0..0. .0..0..0. .0..0..0
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Crossrefs
Cf. A282791.
Formula
Empirical: a(n) = 4*a(n-1) +8*a(n-2) -8*a(n-3) -78*a(n-4) -72*a(n-5) -16*a(n-6) +64*a(n-7) -33*a(n-8) +52*a(n-9) -24*a(n-10) +8*a(n-11) -4*a(n-12)
Comments