A282789 Number of nX6 0..1 arrays with no 1 equal to more than one of its king-move neighbors, with the exception of exactly one element.
12, 240, 8216, 119176, 2207352, 34974844, 545174028, 8385651160, 125782952202, 1869100531456, 27455017613694, 399770700356992, 5779997586129870, 83043999837342288, 1186866407744919094, 16884581390750904832
Offset: 1
Keywords
Examples
Some solutions for n=4 ..0..1..0..0..0..0. .1..0..0..0..0..0. .0..0..0..0..1..0. .0..0..0..0..0..1 ..0..0..1..0..1..0. .0..0..0..0..1..0. .0..1..0..1..0..0. .0..1..0..0..0..0 ..0..0..0..0..0..0. .0..0..0..1..0..0. .0..0..0..0..0..0. .0..0..0..0..0..1 ..0..0..1..1..1..0. .1..0..1..0..0..0. .0..1..0..1..1..1. .1..1..1..0..0..0
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
- R. H. Hardin, Empirical recurrence of order 60
Crossrefs
Cf. A282791.
Formula
Empirical recurrence of order 60 (see link above)
Comments