A282785
Number of n X 2 0..1 arrays with no 1 equal to more than one of its king-move neighbors, with the exception of exactly one element.
Original entry on oeis.org
0, 0, 8, 16, 72, 240, 736, 2352, 7128, 21424, 63768, 187424, 547136, 1586016, 4570280, 13105488, 37414632, 106404944, 301580704, 852159120, 2401326712, 6750087408, 18931901880, 52989773184, 148039566336, 412873929408, 1149659579720
Offset: 1
Some solutions for n=4:
..0..1. .1..0. .0..0. .0..0. .0..0. .0..0. .1..0. .1..0. .0..0. .0..1
..1..0. .0..1. .1..0. .0..1. .0..1. .1..0. .1..0. .0..1. .1..0. .1..0
..1..0. .1..0. .0..1. .1..0. .1..0. .1..0. .1..0. .0..1. .0..1. .0..1
..0..0. .0..0. .0..1. .1..0. .0..1. .1..0. .0..0. .0..0. .1..0. .0..0
A282786
Number of nX3 0..1 arrays with no 1 equal to more than one of its king-move neighbors, with the exception of exactly one element.
Original entry on oeis.org
1, 8, 73, 318, 1747, 8216, 38027, 173722, 773529, 3412416, 14880845, 64319686, 276057515, 1177345064, 4994757435, 21091941082, 88706514017, 371741444080, 1552891025645, 6468454612966, 26874623008899, 111396556833528
Offset: 1
Some solutions for n=4
..0..1..1. .0..1..1. .0..1..0. .1..1..1. .1..0..0. .0..0..1. .1..0..1
..0..0..0. .1..0..0. .1..0..0. .0..0..0. .0..0..1. .0..0..0. .0..0..1
..0..0..0. .0..0..1. .0..1..0. .0..0..1. .1..1..0. .1..1..1. .0..1..0
..1..1..1. .0..0..1. .0..0..0. .1..0..1. .0..0..0. .0..0..0. .0..0..0
A282787
Number of n X 4 0..1 arrays with no 1 equal to more than one of its king-move neighbors, with the exception of exactly one element.
Original entry on oeis.org
2, 16, 318, 1952, 16584, 119176, 832218, 5780340, 39020884, 260919192, 1725189008, 11301829056, 73518360532, 475188725292, 3055000301306, 19549420762100, 124588203699132, 791140457595836, 5007656160113482, 31605725372441888
Offset: 1
Some solutions for n=4
..0..0..1..0. .1..0..1..0. .0..1..0..0. .1..1..0..0. .0..0..1..0
..0..0..0..0. .0..0..1..0. .0..0..0..1. .0..0..0..0. .1..0..0..1
..1..1..1..0. .1..0..1..0. .0..0..0..0. .0..0..0..0. .0..1..0..1
..0..0..0..0. .1..0..0..0. .0..1..1..1. .0..1..1..1. .0..0..0..0
A282788
Number of nX5 0..1 arrays with no 1 equal to more than one of its king-move neighbors, with the exception of exactly one element.
Original entry on oeis.org
5, 72, 1747, 16584, 208559, 2207352, 22998587, 236744562, 2372235577, 23556868268, 231170201002, 2248366154372, 21712536566614, 208339762352392, 1988486114090520, 18890627682669588, 178728457004534603
Offset: 1
Some solutions for n=4
..0..0..0..0..1. .0..0..0..0..0. .0..1..0..0..0. .0..0..0..0..0
..0..1..1..0..1. .1..0..0..1..0. .0..1..0..0..0. .0..0..1..0..0
..0..0..0..0..0. .0..0..0..0..1. .0..0..1..0..0. .0..0..0..1..0
..1..0..1..1..1. .1..0..0..1..0. .0..0..0..0..0. .1..0..0..0..1
A282789
Number of nX6 0..1 arrays with no 1 equal to more than one of its king-move neighbors, with the exception of exactly one element.
Original entry on oeis.org
12, 240, 8216, 119176, 2207352, 34974844, 545174028, 8385651160, 125782952202, 1869100531456, 27455017613694, 399770700356992, 5779997586129870, 83043999837342288, 1186866407744919094, 16884581390750904832
Offset: 1
Some solutions for n=4
..0..1..0..0..0..0. .1..0..0..0..0..0. .0..0..0..0..1..0. .0..0..0..0..0..1
..0..0..1..0..1..0. .0..0..0..0..1..0. .0..1..0..1..0..0. .0..1..0..0..0..0
..0..0..0..0..0..0. .0..0..0..1..0..0. .0..0..0..0..0..0. .0..0..0..0..0..1
..0..0..1..1..1..0. .1..0..1..0..0..0. .0..1..0..1..1..1. .1..1..1..0..0..0
A282790
Number of nX7 0..1 arrays with no 1 equal to more than one of its king-move neighbors, with the exception of exactly one element.
Original entry on oeis.org
26, 736, 38027, 832218, 22998587, 545174028, 12713143876, 292288389872, 6555156469894, 145619095090322, 3197415688277735, 69595512931794512, 1504085477252415247, 32301337050939080872, 690041423059410095352
Offset: 1
Some solutions for n=3
..1..0..1..1..0..1..0. .0..0..0..1..0..0..0. .1..0..0..0..1..0..0
..0..0..0..0..0..0..1. .1..0..0..0..1..0..0. .0..0..0..1..0..0..0
..0..0..1..0..0..0..1. .1..0..1..0..1..0..0. .0..1..0..0..1..0..1
A282784
Number of n X n 0..1 arrays with no 1 equal to more than one of its king-move neighbors, with the exception of exactly one element.
Original entry on oeis.org
0, 0, 73, 1952, 208559, 34974844, 12713143876, 10031326473244, 16844842566734425, 61957626701788646084, 497581272671041376917187
Offset: 1
Some solutions for n=4
..0..0..1..0. .1..0..0..1. .1..0..1..1. .0..1..0..1. .0..1..0..0
..0..0..0..0. .0..1..0..0. .1..0..0..0. .0..1..0..0. .0..0..1..1
..0..0..1..0. .1..0..0..0. .1..0..0..0. .0..0..1..0. .1..0..0..0
..0..1..0..1. .0..0..0..0. .0..0..0..1. .1..0..0..0. .0..0..1..1
Showing 1-7 of 7 results.
Comments