This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A282792 #12 Feb 27 2018 07:09:10 %S A282792 1,-312,-122328,1193376,120735336,123318576,-26119268064, %T A282792 -383848045248,-3132125965080,-18290795499096,-84925855577232, %U A282792 -331983655889184,-1133781877844448,-3470165144567184,-9697162366507968,-25093220330304576,-60786860467926552 %N A282792 Coefficients in q-expansion of E_2^2*E_4*E_6, where E_2, E_4, E_6 are the Eisenstein series shown in A006352, A004009, A013973, respectively. %H A282792 Seiichi Manyama, <a href="/A282792/b282792.txt">Table of n, a(n) for n = 0..1000</a> %t A282792 terms = 17; %t A282792 E2[x_] = 1 - 24*Sum[k*x^k/(1 - x^k), {k, 1, terms}]; %t A282792 E4[x_] = 1 + 240*Sum[k^3*x^k/(1 - x^k), {k, 1, terms}]; %t A282792 E6[x_] = 1 - 504*Sum[k^5*x^k/(1 - x^k), {k, 1, terms}]; %t A282792 E4[x]^2*E6[x]*E6[x] + O[x]^terms // CoefficientList[#, x]& (* _Jean-François Alcover_, Feb 27 2018 *) %Y A282792 Cf. A282102 (E_2*E_4*E_6), this sequence (E_2^2*E_4*E_6), A282596 (E_2*E_4^2*E_6), A282547 (E_2*E_4*E_6^2). %K A282792 sign %O A282792 0,2 %A A282792 _Seiichi Manyama_, Feb 21 2017