cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A282794 Indices k of nontrivial Riemann zeta zeros such that floor(Im(zetazero(k))/(2*Pi)*log(Im(zetazero(k))/(2*Pi*e)) + 7/8) - k + 1 = -1.

Original entry on oeis.org

136, 213, 256, 379, 399, 509, 531, 580, 639, 696, 705, 779, 795, 809, 871, 994, 1018, 1048, 1073, 1088, 1096, 1113, 1137, 1158, 1167, 1209, 1233, 1265, 1296, 1321, 1331, 1346, 1404, 1445, 1487
Offset: 1

Views

Author

Mats Granvik, Feb 21 2017

Keywords

Comments

Conjecture 1: The union of this sequence and A282793 is A153815.
Conjecture 2: The zeta zeros whose indices are terms of this sequence are the locations where the zeta zero counting function, (RiemannSiegelTheta(t) + Im(log(zeta(1/2 + i*t))))/Pi + 1, undercounts the zeta zeros on the critical line.
Conjecture 3: This sequence consists of the numbers k such that sign(Im(zetazero(k)) - 2*Pi*e*exp(LambertW((k - 15/8)/e))) = -1. Verified for the first 100000 zeta zeros.

Crossrefs

Programs

  • Mathematica
    (* Definition: *)
    Monitor[Flatten[Position[Table[Floor[Im[ZetaZero[n]]/(2*Pi)*Log[Im[ZetaZero[n]]/(2*Pi*Exp[1])] + 7/8] - n + 1, {n, 1, 1500}], -1]], n]