cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A214674 Conway's subprime Fibonacci sequence.

Original entry on oeis.org

1, 1, 2, 3, 5, 4, 3, 7, 5, 6, 11, 17, 14, 31, 15, 23, 19, 21, 20, 41, 61, 51, 56, 107, 163, 135, 149, 142, 97, 239, 168, 37, 41, 39, 40, 79, 17, 48, 13, 61, 37, 49, 43, 46, 89, 45, 67, 56, 41, 97, 69, 83, 76, 53, 43, 48, 13
Offset: 1

Views

Author

Wouter Meeussen, Jul 25 2012

Keywords

Comments

Similar to the Fibonacci recursion starting with (1, 1), but each new nonprime term is divided by its least prime factor. Sequence enters a loop of length 18 after 38 terms on reaching (48, 13).

References

  • Siobhan Roberts, Genius At Play: The Curious Mind of John Horton Conway, Bloomsbury, 2015, pages xx-xxi.

Crossrefs

Programs

  • Mathematica
    guyKhoSal[{a_, b_}] := Block[{c, l, r}, c = NestWhile[(p = Tr[Take[#, -2]]; If[PrimeQ[p], q = p, q = p/Part[FactorInteger[p, FactorComplete -> False], 1, 1]]; Flatten[{#, q}]) &, {a, b}, FreeQ[Partition[#1, 2, 1], Take[#2, -2]] &, 2, 1000]; l = Length[c]; r = Tr@Position[Partition[c,2,1], Take[c,-2], 1, 1]; l-r-1; c]; guyKhoSal[{1,1}]
    f[s_List] := Block[{a = s[[-2]] + s[[-1]]}, If[ PrimeQ[a], Append[s, a], Append[s, a/FactorInteger[a][[1, 1]] ]]]; Nest[f, {1, 1}, 73] (* Robert G. Wilson v, Aug 09 2012 *)
  • PARI
    fatw(n,a=[0,1],p=[])={for(i=2,n,my(f=factor(a[i]+a[i-1])~);for(k=1,#f,setsearch(p,f[1,k])&next;f[2,k]--;p=setunion(p,Set(f[1,k]));break);a=concat(a,factorback(f~)));a}
    fatw(99) /* M. F. Hasler, Jul 25 2012 */

A282814 Table read by antidiagonals (n > 0, k > 0): T(n, k) is the length of the loop in Conway's subprime Fibonacci sequence with starting values of n and k.

Original entry on oeis.org

18, 18, 18, 18, 1, 18, 136, 18, 18, 136, 18, 18, 1, 18, 136, 18, 18, 18, 136, 18, 18, 136, 18, 136, 1, 18, 136, 18, 18, 18, 1, 18, 136, 1, 18, 18, 136, 18, 18, 136, 1, 18, 18, 136, 18, 18, 18, 18, 18, 18, 18, 136, 136, 136, 18, 18, 136, 1, 18, 18, 1, 18, 18
Offset: 1

Views

Author

Peter Kagey, Feb 21 2017

Keywords

Comments

All terms are in A214897, which is conjectured to be finite. - Peter Kagey, Nov 04 2017

Examples

			T(1, 1) = 18 because 18 is the loop length in Conway's subprime Fibonacci sequence when starting with 1, 1 (A214674). (i.e., A214674(n) = A214674(n + 18) for n >= 38 = A282813(1, 1).)
Upper-left corner of table:
   18  18  18 136 136  18  18  18  18  18 ...
   18   1  18  18  18 136  18 136 136  18 ...
   18  18   1 136  18   1  18 136  18  18 ...
  136  18  18   1 136  18 136  18  18 136 ...
   18  18 136  18   1  18  18  18 136   1 ...
   18  18   1 136  18   1  18  18  18  18 ...
  136  18  18  18  18  18   1 136  18  18 ...
   18  18  18  18 136  18  18   1  18  18 ...
  136  18   1  18  18  18 136  18   1 136 ...
   18 136  18 136   1  18 136  18  18   1 ...
  ...
		

Crossrefs

A282812 Table read by antidiagonals (n > 0, k > 0): T(n, k) is the largest value in Conway's subprime Fibonacci sequence with starting values of n and k.

Original entry on oeis.org

239, 239, 239, 239, 2, 239, 347, 239, 239, 347, 239, 239, 3, 239, 347, 239, 239, 239, 347, 239, 239, 347, 239, 347, 4, 239, 347, 239, 239, 239, 6, 239, 347, 6, 239, 239, 347, 239, 239, 347, 5, 239, 239, 463, 239, 97, 239, 239, 239, 239, 239, 347, 347, 463
Offset: 1

Views

Author

Peter Kagey, Feb 21 2017

Keywords

Examples

			T(1, 1) = 239 because 239 is the largest value in Conway's subprime Fibonacci sequence when starting with 1, 1 (A214674).
Upper-left corner of table:
  239 239 239 347 347 239 239 239 239 239 ...
  239   2 239 239 239 347 239 463 463 239 ...
  239 239   3 347 239   6 239 347 239 239 ...
  347 239 239   4 347 239 347 239 239 463 ...
  239 239 347 239   5 239 239 239 463  10 ...
  239 239   6 347 239   6 239 239 239 109 ...
  347 239 239 239 239 239   7 463 239 239 ...
  239 239 239 239 463 239 239   8 109 239 ...
  347 239   9 733 239 239 463 239   9 347 ...
   97 347 239 347  10 239 463 109 239  10 ...
  ...
		

Crossrefs

Showing 1-3 of 3 results.