A282816 Number of inequivalent ways to color the faces of a cube using at most n colors so that no two opposite sides have the same color.
0, 0, 1, 11, 76, 340, 1135, 3101, 7336, 15576, 30405, 55495, 95876, 158236, 251251, 385945, 576080, 838576, 1193961, 1666851, 2286460, 3087140, 4108951, 5398261, 7008376, 9000200, 11442925, 14414751, 18003636, 22308076, 27437915, 33515185, 40674976, 49066336
Offset: 0
Examples
For n = 2 we get a(2) = 1 way to color the faces of a cube with two colors so that no two opposite sides have the same color.
Links
- Index entries for linear recurrences with constant coefficients, signature (7,-21,35,-35,21,-7,1).
Programs
-
Mathematica
Table[(8n(n-1) + n^3(n-1)^3) /24, {n, 0, 35}]
-
PARI
a(n) = n*(n-1)*(n^4-2*n^3+n^2+8)/24 \\ Charles R Greathouse IV, Feb 22 2017
Formula
a(n) = n*(n-1)*(n^4-2*n^3+n^2+8)/24.
G.f.: -x^2*(1+4*x+20*x^2+4*x^3+x^4)/(x-1)^7 . - R. J. Mathar, Feb 23 2017
Comments