This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A282820 #13 Feb 22 2017 10:42:39 %S A282820 0,0,0,9,132,720,2580,7245,17304,36792,71640,130185,223740,367224, %T A282820 579852,885885,1315440,1905360,2700144,3752937,5126580,6894720, %U A282820 9142980,11970189,15489672,19830600,25139400,31581225,39341484,48627432,59669820,72724605,88074720 %N A282820 Number of inequivalent ways to color the edges of a tetrahedron using at most n colors so that no color appears more than twice. %H A282820 Colin Barker, <a href="/A282820/b282820.txt">Table of n, a(n) for n = 0..1000</a> %H A282820 <a href="/index/Rec#order_07">Index entries for linear recurrences with constant coefficients</a>, signature (7,-21,35,-35,21,-7,1). %F A282820 a(n) = (n-2)*n*(n-1)*(n^3+3*n^2-10*n-6)/12. %F A282820 From _Colin Barker_, Feb 22 2017: (Start) %F A282820 G.f.: 3*x^3*(3 - x)*(1 + 8*x + x^2) / (1 - x)^7. %F A282820 a(n) = 7*a(n-1) - 21*a(n-2) + 35*a(n-3) - 35*a(n-4) + 21*a(n-5) - 7*a(n-6) + a(n-7) for n>6. (End) %e A282820 For n = 3 we get a(3) = 9 ways to color the edges of a tetrahedron in three colors so that no color appears more than twice. %t A282820 Table[(n-2)*n*(n-1)*(n^3+3*n^2-10*n-6)/12, {n, 0, 32}] %o A282820 (PARI) a(n) = (n-2)*n*(n-1)*(n^3+3*n^2-10*n-6)/12 \\ _Charles R Greathouse IV_, Feb 22 2017 %o A282820 (PARI) concat(vector(3), Vec(3*x^3*(3 - x)*(1 + 8*x + x^2) / (1 - x)^7 + O(x^40))) \\ _Colin Barker_, Feb 22 2017 %Y A282820 Cf. A282817, A282818, A282819, A046023 (tetrahedral edge colorings without restriction). %K A282820 nonn,easy %O A282820 0,4 %A A282820 _David Nacin_, Feb 22 2017