This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A282852 #23 Nov 09 2024 19:36:02 %S A282852 0,1,37,108,214,355,531,742,988,1269,1585,1936,2322,2743,3199,3690, %T A282852 4216,4777,5373,6004,6670,7371,8107,8878,9684,10525,11401,12312,13258, %U A282852 14239,15255,16306,17392,18513,19669,20860,22086,23347,24643,25974 %N A282852 37-gonal numbers: a(n) = n*(35*n-33)/2. %C A282852 According to the common formula for the polygonal numbers: (s-2)*n*(n-1)/2 + n (here s = 37). %H A282852 <a href="/index/Pol#polygonal_numbers">Index to sequences related to polygonal numbers</a> %H A282852 <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (3,-3,1). %F A282852 From _Nikolaos Pantelidis_, Feb 10 2023: (Start) %F A282852 G.f.: x*(1 + 34*x)/(1 - x)^3. %F A282852 E.g.f.: exp(x)*(x + 35*x^2/2). (End) %t A282852 Table[n(35n-33)/2, {n, 40}] %t A282852 PolygonalNumber[37,Range[0,40]] (* Requires Mathematica version 10 or later *) (* or *) LinearRecurrence[{3,-3,1},{0,1,37},40] (* _Harvey P. Dale_, Oct 24 2020 *) %o A282852 (Python) %o A282852 for n in range(0,51): %o A282852 print(n*(35*n-33)//2) %o A282852 (PARI) for(n=0,100,print1(n*(35*n-33)/2,", ")) \\ _Derek Orr_, Feb 27 2017 %Y A282852 Cf. A254474, A000217. %K A282852 nonn,easy %O A282852 0,3 %A A282852 _Nathan John Eaves_, Feb 23 2017