A282879 Number of nX2 0..1 arrays with no 1 equal to more than one of its horizontal, vertical and antidiagonal neighbors, with the exception of exactly one element.
0, 2, 8, 32, 122, 416, 1414, 4626, 14930, 47432, 149032, 463918, 1432956, 4397436, 13419434, 40754026, 123245234, 371322718, 1115052844, 3338521720, 9969125698, 29697147320, 88271949298, 261856896380, 775373941754, 2292071140404
Offset: 1
Keywords
Examples
Some solutions for n=4 ..0..0. .1..0. .1..0. .1..1. .0..1. .1..0. .1..1. .1..1. .1..0. .0..0 ..0..0. .0..1. .0..0. .0..0. .0..1. .1..1. .0..1. .0..1. .0..1. .1..0 ..1..1. .1..0. .1..1. .1..1. .1..0. .0..0. .0..0. .0..0. .0..1. .1..0 ..0..1. .1..0. .0..1. .0..1. .0..1. .0..0. .1..1. .0..0. .0..1. .1..0
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Crossrefs
Cf. A282885.
Formula
Empirical: a(n) = 2*a(n-1) +7*a(n-2) -2*a(n-3) -20*a(n-4) -24*a(n-5) -19*a(n-6) -14*a(n-7) -7*a(n-8) -2*a(n-9) -a(n-10).
Empirical: G.f.: 2*x^2*(2*x+1)*(x^3+x^2+1) / ( (x^5+x^4+3*x^3+4*x^2+x-1)^2 ). - R. J. Mathar, Mar 02 2017
Comments