A282880 Number of nX3 0..1 arrays with no 1 equal to more than one of its horizontal, vertical and antidiagonal neighbors, with the exception of exactly one element.
1, 8, 74, 430, 2426, 13062, 67676, 342972, 1707597, 8384136, 40716024, 195950228, 935955604, 4442192472, 20968437076, 98509310972, 460879910601, 2148369624844, 9981992555058, 46244594782978, 213681269956154, 985012878231418
Offset: 1
Keywords
Examples
Some solutions for n=4 ..0..0..0. .0..0..0. .0..1..0. .1..0..0. .0..1..1. .0..0..1. .0..0..1 ..1..0..0. .0..0..1. .1..0..1. .0..1..1. .1..0..0. .1..1..0. .1..1..0 ..1..0..1. .1..1..0. .0..0..1. .1..0..0. .0..0..0. .0..0..0. .0..0..0 ..1..0..0. .0..0..1. .0..0..1. .0..0..1. .0..1..1. .1..0..1. .0..1..0
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Crossrefs
Cf. A282885.
Formula
Empirical: a(n) = 2*a(n-1) +17*a(n-2) +22*a(n-3) -75*a(n-4) -376*a(n-5) -834*a(n-6) -1206*a(n-7) -1229*a(n-8) -824*a(n-9) -187*a(n-10) +346*a(n-11) +511*a(n-12) +344*a(n-13) +91*a(n-14) -74*a(n-15) -106*a(n-16) -42*a(n-17) +2*a(n-18) +16*a(n-19) +4*a(n-20) -a(n-22)
Comments