cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A282879 Number of nX2 0..1 arrays with no 1 equal to more than one of its horizontal, vertical and antidiagonal neighbors, with the exception of exactly one element.

Original entry on oeis.org

0, 2, 8, 32, 122, 416, 1414, 4626, 14930, 47432, 149032, 463918, 1432956, 4397436, 13419434, 40754026, 123245234, 371322718, 1115052844, 3338521720, 9969125698, 29697147320, 88271949298, 261856896380, 775373941754, 2292071140404
Offset: 1

Views

Author

R. H. Hardin, Feb 24 2017

Keywords

Comments

Column 2 of A282885.

Examples

			Some solutions for n=4
..0..0. .1..0. .1..0. .1..1. .0..1. .1..0. .1..1. .1..1. .1..0. .0..0
..0..0. .0..1. .0..0. .0..0. .0..1. .1..1. .0..1. .0..1. .0..1. .1..0
..1..1. .1..0. .1..1. .1..1. .1..0. .0..0. .0..0. .0..0. .0..1. .1..0
..0..1. .1..0. .0..1. .0..1. .0..1. .0..0. .1..1. .0..0. .0..1. .1..0
		

Crossrefs

Cf. A282885.

Formula

Empirical: a(n) = 2*a(n-1) +7*a(n-2) -2*a(n-3) -20*a(n-4) -24*a(n-5) -19*a(n-6) -14*a(n-7) -7*a(n-8) -2*a(n-9) -a(n-10).
Empirical: G.f.: 2*x^2*(2*x+1)*(x^3+x^2+1) / ( (x^5+x^4+3*x^3+4*x^2+x-1)^2 ). - R. J. Mathar, Mar 02 2017

A282880 Number of nX3 0..1 arrays with no 1 equal to more than one of its horizontal, vertical and antidiagonal neighbors, with the exception of exactly one element.

Original entry on oeis.org

1, 8, 74, 430, 2426, 13062, 67676, 342972, 1707597, 8384136, 40716024, 195950228, 935955604, 4442192472, 20968437076, 98509310972, 460879910601, 2148369624844, 9981992555058, 46244594782978, 213681269956154, 985012878231418
Offset: 1

Views

Author

R. H. Hardin, Feb 24 2017

Keywords

Comments

Column 3 of A282885.

Examples

			Some solutions for n=4
..0..0..0. .0..0..0. .0..1..0. .1..0..0. .0..1..1. .0..0..1. .0..0..1
..1..0..0. .0..0..1. .1..0..1. .0..1..1. .1..0..0. .1..1..0. .1..1..0
..1..0..1. .1..1..0. .0..0..1. .1..0..0. .0..0..0. .0..0..0. .0..0..0
..1..0..0. .0..0..1. .0..0..1. .0..0..1. .0..1..1. .1..0..1. .0..1..0
		

Crossrefs

Cf. A282885.

Formula

Empirical: a(n) = 2*a(n-1) +17*a(n-2) +22*a(n-3) -75*a(n-4) -376*a(n-5) -834*a(n-6) -1206*a(n-7) -1229*a(n-8) -824*a(n-9) -187*a(n-10) +346*a(n-11) +511*a(n-12) +344*a(n-13) +91*a(n-14) -74*a(n-15) -106*a(n-16) -42*a(n-17) +2*a(n-18) +16*a(n-19) +4*a(n-20) -a(n-22)

A282881 Number of nX4 0..1 arrays with no 1 equal to more than one of its horizontal, vertical and antidiagonal neighbors, with the exception of exactly one element.

Original entry on oeis.org

2, 32, 430, 3762, 34314, 286920, 2342046, 18668994, 146171090, 1129426388, 8631205392, 65377140772, 491525631332, 3672205687546, 27287152439396, 201813637267634, 1486474449573152, 10909072654743782, 79802389614658676
Offset: 1

Views

Author

R. H. Hardin, Feb 24 2017

Keywords

Comments

Column 4 of A282885.

Examples

			Some solutions for n=4
..1..1..0..0. .1..0..0..1. .0..1..0..0. .0..0..0..0. .0..1..1..0
..0..1..0..1. .1..1..0..0. .1..0..0..0. .1..0..0..0. .1..0..0..0
..0..0..0..1. .0..0..1..0. .0..0..1..1. .0..1..1..0. .0..1..0..0
..0..1..0..0. .1..0..0..1. .0..0..0..1. .0..0..1..0. .1..0..1..1
		

Crossrefs

Cf. A282885.

Formula

Empirical: a(n) = 2*a(n-1) +47*a(n-2) +124*a(n-3) -408*a(n-4) -3902*a(n-5) -15430*a(n-6) -42962*a(n-7) -94378*a(n-8) -169172*a(n-9) -254731*a(n-10) -324792*a(n-11) -346186*a(n-12) -306142*a(n-13) -226049*a(n-14) -101410*a(n-15) -32004*a(n-16) +9038*a(n-17) +56744*a(n-18) +18514*a(n-19) -78727*a(n-20) +278126*a(n-21) -491637*a(n-22) +664706*a(n-23) -600043*a(n-24) +363134*a(n-25) -86242*a(n-26) -73590*a(n-27) +88574*a(n-28) -49032*a(n-29) +20328*a(n-30) -6196*a(n-31) -2591*a(n-32) +4334*a(n-33) -1998*a(n-34) +278*a(n-35) +31*a(n-36) -40*a(n-37) +63*a(n-38) -34*a(n-39) +2*a(n-40) +4*a(n-41) -a(n-42)

A282882 Number of nX5 0..1 arrays with no 1 equal to more than one of its horizontal, vertical and antidiagonal neighbors, with the exception of exactly one element.

Original entry on oeis.org

5, 122, 2426, 34314, 480995, 6296324, 80114311, 995928444, 12166597450, 146641882796, 1748337983112, 20660129799214, 242334179025197, 2824644917951946, 32746711583513846, 377865004111687272
Offset: 1

Views

Author

R. H. Hardin, Feb 24 2017

Keywords

Comments

Column 5 of A282885.

Examples

			Some solutions for n=4
..1..0..0..1..0. .1..1..1..0..0. .0..0..0..1..0. .1..0..0..1..0
..0..0..0..1..0. .0..0..0..1..0. .0..1..0..0..1. .1..0..0..1..1
..0..0..0..1..0. .1..1..0..0..0. .0..1..0..0..1. .0..1..0..0..0
..0..0..0..0..0. .0..0..1..0..0. .1..0..1..0..0. .1..0..0..0..1
		

Crossrefs

Cf. A282885.

Formula

Empirical recurrence of order 86 (see link above)

A282883 Number of nX6 0..1 arrays with no 1 equal to more than one of its horizontal, vertical and antidiagonal neighbors, with the exception of exactly one element.

Original entry on oeis.org

12, 416, 13062, 286920, 6296324, 128768496, 2561487246, 49811090624, 951678283294, 17942875499666, 334648098052706, 6186474258515070, 113524128817623768, 2070195868615817640, 37549019984769514068
Offset: 1

Views

Author

R. H. Hardin, Feb 24 2017

Keywords

Comments

Column 6 of A282885.

Examples

			Some solutions for n=3
..0..0..1..0..1..0. .0..0..1..1..1..0. .0..0..0..1..0..0. .1..0..1..0..0..1
..0..1..0..0..0..1. .1..0..0..0..0..0. .0..0..1..0..0..0. .0..1..0..0..0..0
..1..0..1..0..0..1. .0..1..0..1..0..0. .0..1..0..0..0..0. .1..0..0..0..1..0
		

Crossrefs

Cf. A282885.

A282884 Number of nX7 0..1 arrays with no 1 equal to more than one of its horizontal, vertical and antidiagonal neighbors, with the exception of exactly one element.

Original entry on oeis.org

26, 1414, 67676, 2342046, 80114311, 2561487246, 79687436788, 2422749969094, 72384911847530, 2134206947210504, 62249002221009867, 1799694062835383562, 51649085124007452943, 1473029187027581364502, 41785825649251975653356
Offset: 1

Views

Author

R. H. Hardin, Feb 24 2017

Keywords

Comments

Column 7 of A282885.

Examples

			Some solutions for n=3
..1..1..0..0..0..1..1. .0..1..1..0..0..0..1. .1..0..1..0..0..0..0
..0..0..0..1..0..0..0. .0..0..1..0..0..1..0. .0..0..1..0..0..0..0
..0..0..0..0..1..1..1. .1..0..0..0..0..0..1. .0..0..0..0..1..1..1
		

Crossrefs

Cf. A282885.

A282878 Number of n X n 0..1 arrays with no 1 equal to more than one of its horizontal, vertical and antidiagonal neighbors, with the exception of exactly one element.

Original entry on oeis.org

0, 2, 74, 3762, 480995, 128768496, 79687436788, 115172557654616, 393143666098549156, 3196549492640753656296, 62216948503916625663186184
Offset: 1

Views

Author

R. H. Hardin, Feb 24 2017

Keywords

Comments

Diagonal of A282885.

Examples

			Some solutions for n=4
..1..0..0..1. .0..1..0..0. .1..0..1..0. .1..0..1..0. .1..0..0..1
..1..0..1..0. .1..0..1..0. .0..1..0..0. .0..0..1..0. .0..0..0..1
..0..1..0..0. .1..0..0..1. .0..0..0..1. .0..1..0..1. .1..0..0..0
..0..0..0..0. .0..1..0..0. .0..1..1..0. .0..0..0..0. .0..1..1..1
		

Crossrefs

Cf. A282885.
Showing 1-7 of 7 results.