cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A282893 The difference between the number of partitions of 2n into odd parts (A000009) and the number of partitions of 2n into even parts (A035363).

This page as a plain text file.
%I A282893 #24 Feb 16 2025 08:33:42
%S A282893 0,0,0,1,1,3,4,7,10,16,22,33,45,64,87,120,159,215,283,374,486,634,814,
%T A282893 1049,1335,1700,2146,2708,3390,4243,5276,6552,8095,9989,12266,15044,
%U A282893 18375,22409,27235,33049,39974,48281,58148,69923,83871,100452,120027,143214,170515,202731,240567,285073,337195
%N A282893 The difference between the number of partitions of 2n into odd parts (A000009) and the number of partitions of 2n into even parts (A035363).
%C A282893 The even bisection of A282892. The other bisection is A078408.
%H A282893 Alois P. Heinz, <a href="/A282893/b282893.txt">Table of n, a(n) for n = 0..10000</a>
%H A282893 Michael Somos, <a href="/A010815/a010815.txt">Introduction to Ramanujan theta functions</a>
%H A282893 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/RamanujanThetaFunctions.html">Ramanujan Theta Functions</a>
%F A282893 a(n) = A282892(2n).
%F A282893 Expansion of (f(x^3, x^5) - 1) / f(-x, -x^2) in powers of x where f(, ) is Ramanujan's general theta function. - _Michael Somos_, Feb 24 2017
%F A282893 a(n) = A035294(n) - A000041(n). - _Michael Somos_, Feb 24 2017
%e A282893 G.f. = x^3 + x^4 + 3*x^5 + 4*x^6 + 7*x^7 + 10*x^8 + 16*x^9 + 22*x^10 + 33*x^11 + ...
%p A282893 with(numtheory):
%p A282893 b:= proc(n, t) option remember; `if`(n=0, 1, add(add(`if`(
%p A282893       (d+t)::odd, d, 0), d=divisors(j))*b(n-j, t), j=1..n)/n)
%p A282893     end:
%p A282893 a:= n-> b(2*n, 0) -b(2*n, 1):
%p A282893 seq(a(n), n=0..80);  # _Alois P. Heinz_, Feb 24 2017
%t A282893 f[n_] := Length[ IntegerPartitions[n, All, 2Range[n] -1]] - Length[ IntegerPartitions[n, All, 2 Range[n]]]; Array[ f[2#] &, 52]
%t A282893 a[ n_] := SeriesCoefficient[ Sum[ Sign @ SquaresR[1, 16 k + 1] x^k, {k, n}] / QPochhammer[x], {x, 0, n}]; (* _Michael Somos_, Feb 24 2017 *)
%o A282893 (PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( sum(k=1, n, issquare(16*k + 1)*x^k, A) / eta(x + A), n))}; /* _Michael Somos_, Feb 24 2017 */
%Y A282893 Cf. A000009, A000041, A035294, A035363, A078408, A214264, A282892.
%K A282893 nonn
%O A282893 0,6
%A A282893 _Robert G. Wilson v_, Feb 24 2017