A282894 Remainder when sum of first n terms of A004001 is divided by A004001(n).
0, 0, 0, 0, 0, 1, 1, 1, 1, 2, 4, 4, 6, 6, 6, 6, 6, 7, 9, 0, 0, 2, 5, 5, 8, 8, 8, 10, 10, 10, 10, 10, 9, 9, 10, 12, 15, 15, 18, 22, 3, 3, 7, 12, 12, 17, 17, 17, 21, 26, 26, 1, 1, 1, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 2, 0, 34, 35, 0, 2, 2, 4, 7, 11, 16, 16, 21, 27, 34, 34, 41, 2, 2, 9, 9, 9, 15, 22, 30, 30, 38, 47, 47, 2, 2, 2
Offset: 1
Examples
a(6) = 1 since Sum_{k=1..6} A004001(k) = 1 + 1 + 2 + 2 + 3 + 4 = 13 and remainder when 13 is divided by A004001(6) = 4 is 1.
Links
- Altug Alkan, Table of n, a(n) for n = 1..10000
- Altug Alkan, Alternative Graph of A282894
Programs
-
Maple
A004001:= proc(n) option remember; procname(procname(n-1)) +procname(n-procname(n-1)) end proc: A004001(1):= 1: A004001(2):= 1: L:= ListTools[PartialSums](map(A004001, [$1..1000])): seq(L[i] mod A004001(i), i=1..1000); # Robert Israel, Feb 26 2017
-
Mathematica
a[1] = 1; a[2] = 1; a[n_] := a[n] = a[a[n - 1]] + a[n - a[n - 1]]; MapIndexed[Last@ QuotientRemainder[#1, a@ First@ #2] &, Accumulate@ Table[a@ n, {n, 96}]] (* Michael De Vlieger, Feb 24 2017, after Robert G. Wilson v at A004001 *)
-
PARI
a=vector(1000); a[1]=a[2]=1; for(n=3, #a, a[n]=a[a[n-1]]+a[n-a[n-1]]); vector(#a, n, sum(k=1, n, a[k]) % a[n])
-
PARI
first(n)=my(v=vector(n),s); v[1]=v[2]=1; for(k=3, n, v[k]=v[v[k-1]]+v[k-v[k-1]]); for(k=1,n, s+=v[k]; v[k]=s%v[k]); v \\ Charles R Greathouse IV, Feb 26 2017