This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A282898 #35 Feb 16 2025 08:33:42 %S A282898 1,7,31,127,511,1414477,8191,118518239,5749691557,91546277357, %T A282898 23273283019,1982765468311237,22076500342261,455371239541065869, %U A282898 925118910976041358111,16555640865486520478399,1302480594081611886641,904185845619475242495834469891 %N A282898 Numerator of the coefficients of the series expansion of the Riemann-Siegel theta function at infinity. %C A282898 See "RiemannSiegelTheta" in the help file of Mathematica, Series expansion at infinity. %H A282898 Seiichi Manyama, <a href="/A282898/b282898.txt">Table of n, a(n) for n = 1..275</a> %H A282898 Richard P. Brent, <a href="https://arxiv.org/abs/1609.03682">On asymptotic approximations to the log-Gamma and Riemann-Siegel theta functions</a>, arXiv:1609.03682 [math.NA], 2016. %H A282898 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/Riemann-SiegelFunctions.html">Riemann-Siegel Functions</a> %H A282898 Wikipedia, <a href="https://en.wikipedia.org/wiki/Riemann%E2%80%93Siegel_theta_function">Riemann-Siegel theta function</a> %H A282898 Wolfram Language and System, <a href="http://reference.wolfram.com/language/ref/RiemannSiegelTheta.html">RiemannSiegelTheta</a> %t A282898 Numerator[ DeleteCases[ CoefficientList[ CoefficientList[ Series[ RiemannSiegelTheta[ t], {t, Infinity, 41}], 1/t^_] + Pi/8 + t/2 + t*Log[2]/2 + t*Log[Pi]/2 + t*Log[1/t]/2, 1/t][[1]], 0]] %Y A282898 Cf. A114721, A282899. %Y A282898 Differs from A036282. %K A282898 nonn,frac %O A282898 1,2 %A A282898 _Mats Granvik_ and _Robert G. Wilson v_, Feb 24 2017