cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A282899 Denominators/48 of the coefficients of the series expansion of the Riemann-Siegel theta function at infinity.

This page as a plain text file.
%I A282899 #34 Feb 16 2025 08:33:42
%S A282899 1,120,1680,8960,25344,30750720,53248,167116800,1333592064,2739404800,
%T A282899 72351744,526720696320,419430400,525462405120,55745722712064,
%U A282899 45268955299840,141733920768,3462000479620300800,2542620639232,483482750523801600,284950532966055936
%N A282899 Denominators/48 of the coefficients of the series expansion of the Riemann-Siegel theta function at infinity.
%C A282899 See "RiemannSiegelTheta" in the help file of Mathematica, Series expansion at infinity.
%H A282899 Seiichi Manyama, <a href="/A282899/b282899.txt">Table of n, a(n) for n = 1..1000</a>
%H A282899 Richard P. Brent, <a href="https://arxiv.org/abs/1609.03682"> On asymptotic approximations to the log-Gamma and Riemann-Siegel theta functions</a>, arXiv:1609.03682 [math.NA], 2016.
%H A282899 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/Riemann-SiegelFunctions.html">Riemann-Siegel Functions</a>.
%H A282899 Wikipedia, <a href="https://en.wikipedia.org/wiki/Riemann%E2%80%93Siegel_theta_function"> Riemann-Siegel theta function</a>.
%H A282899 Wolfram Language and System, <a href="http://reference.wolfram.com/language/ref/RiemannSiegelTheta.html"> RiemannSiegelTheta</a>.
%t A282899 Denominator[ DeleteCases[ CoefficientList[ CoefficientList[ Series[ RiemannSiegelTheta[ t], {t, Infinity, 41}], 1/t^_] + Pi/8 + t/2 + t*Log[2]/2 + t*Log[Pi]/2 + t*Log[1/t]/2, 1/t][[1]], 0]]/48
%Y A282899 Cf. A114721, A282898 (numerators).
%K A282899 nonn,frac
%O A282899 1,2
%A A282899 _Mats Granvik_ and _Robert G. Wilson v_, Feb 24 2017