This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A282925 #32 Sep 08 2022 08:46:18 %S A282925 1,29,464,5365,49880,394632,2750969,17296732,99742368,534126988, %T A282925 2681856693,12722233068,57373155952,247218913828,1022189562610, %U A282925 4070289420139,15656921120982,58336024110584,211023516790156,742643172981206,2547265600634862,8529351700138885 %N A282925 Expansion of Product_{k>=1} (1 - x^(7*k))^28/(1 - x^k)^29 in powers of x. %H A282925 Seiichi Manyama, <a href="/A282925/b282925.txt">Table of n, a(n) for n = 0..1000</a> %F A282925 G.f.: Product_{n>=1} (1 - x^(7*n))^28/(1 - x^n)^29. %F A282925 a(n) ~ exp(Pi*sqrt(350*n/21)) * sqrt(175) / (4*sqrt(3) * 7^(29/2) * n). - _Vaclav Kotesovec_, Nov 10 2017 %t A282925 nmax = 30; CoefficientList[Series[Product[(1 - x^(7*k))^28/(1 - x^k)^29, {k, 1, nmax}], {x, 0, nmax}], x] (* _Vaclav Kotesovec_, Nov 10 2017 *) %o A282925 (PARI) my(N=30,x='x+O('x^N)); Vec(prod(j=1, N, (1 - x^(7*j))^28/(1 - x^j)^29)) \\ _G. C. Greubel_, Nov 18 2018 %o A282925 (Magma) m:=30; R<x>:=PowerSeriesRing(Integers(), m); Coefficients(R!( (&*[(1 - x^(7*j))^28/(1 - x^j)^29: j in [1..m+2]]) )); // _G. C. Greubel_, Nov 18 2018 %o A282925 (Sage) %o A282925 R = PowerSeriesRing(ZZ, 'x') %o A282925 prec = 30 %o A282925 x = R.gen().O(prec) %o A282925 s = prod((1 - x^(7*j))^28/(1 - x^j)^29 for j in (1..prec)) %o A282925 print(s.coefficients()) # _G. C. Greubel_, Nov 18 2018 %Y A282925 Cf. A282919. %K A282925 nonn %O A282925 0,2 %A A282925 _Seiichi Manyama_, Feb 24 2017