This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A282926 #33 Sep 08 2022 08:46:18 %S A282926 1,33,594,7667,79101,691119,5299019,36518791,230122266,1343028082, %T A282926 7331536586,37731144564,184232285897,857974579385,3827695162667, %U A282926 16420097827188,67948512704413,271990545250303,1055719283332541,3981884465793740,14621550982740229 %N A282926 Expansion of Product_{k>=1} (1 - x^(7*k))^32/(1 - x^k)^33 in powers of x. %H A282926 Seiichi Manyama, <a href="/A282926/b282926.txt">Table of n, a(n) for n = 0..1000</a> %F A282926 G.f.: Product_{n>=1} (1 - x^(7*n))^32/(1 - x^n)^33. %F A282926 a(n) ~ exp(Pi*sqrt(398*n/21)) * sqrt(199) / (4*sqrt(3) * 7^(33/2) * n). - _Vaclav Kotesovec_, Nov 10 2017 %t A282926 nmax = 30; CoefficientList[Series[Product[(1 - x^(7*k))^32/(1 - x^k)^33, {k, 1, nmax}], {x, 0, nmax}], x] (* _Vaclav Kotesovec_, Nov 10 2017 *) %o A282926 (PARI) my(m=30, x='x+O('x^m)); Vec(prod(j=1,m, (1 - x^(7*j))^32/(1 - x^j)^33)) \\ _G. C. Greubel_, Nov 18 2018 %o A282926 (Magma) m:=30; R<x>:=PowerSeriesRing(Integers(), m); Coefficients(R!( (&*[(1 - x^(7*j))^32/(1 - x^j)^33: j in [1..m]]) )); // _G. C. Greubel_, Nov 18 2018 %o A282926 (Sage) %o A282926 R = PowerSeriesRing(ZZ, 'x') %o A282926 prec = 30 %o A282926 x = R.gen().O(prec) %o A282926 s = prod((1 - x^(7*j))^32/(1 - x^j)^33 for j in (1..prec)) %o A282926 print(s.coefficients()) # _G. C. Greubel_, Nov 18 2018 %Y A282926 Cf. A282919. %K A282926 nonn %O A282926 0,2 %A A282926 _Seiichi Manyama_, Feb 24 2017