This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A282928 #31 Sep 08 2022 08:46:18 %S A282928 1,41,902,14063,173635,1801745,16300739,131814181,969824701, %T A282928 6579564585,41587633402,246925024493,1386436741480,7402293438974, %U A282928 37755020009290,184685764132377,869379223328495,3949788012868677,17363552010806127 %N A282928 Expansion of Product_{k>=1} (1 - x^(7*k))^40/(1 - x^k)^41 in powers of x. %H A282928 Seiichi Manyama, <a href="/A282928/b282928.txt">Table of n, a(n) for n = 0..1000</a> %F A282928 G.f.: Product_{n>=1} (1 - x^(7*n))^40/(1 - x^n)^41. %F A282928 a(n) ~ exp(Pi*sqrt(494*n/21)) * sqrt(247) / (4*sqrt(3) * 7^(41/2) * n). - _Vaclav Kotesovec_, Nov 10 2017 %t A282928 nmax = 30; CoefficientList[Series[Product[(1 - x^(7*k))^40/(1 - x^k)^41, {k, 1, nmax}], {x, 0, nmax}], x] (* _Vaclav Kotesovec_, Nov 10 2017 *) %o A282928 (PARI) my(m=30, x='x+O('x^m)); Vec(prod(j=1,m, (1 - x^(7*j))^40/(1 - x^j)^41)) \\ _G. C. Greubel_, Nov 18 2018 %o A282928 (Magma) m:=30; R<x>:=PowerSeriesRing(Integers(), m); Coefficients(R!( (&*[(1 - x^(7*j))^40/(1 - x^j)^41: j in [1..m+2]]) )); // _G. C. Greubel_, Nov 18 2018 %Y A282928 Cf. A282919. %K A282928 nonn %O A282928 0,2 %A A282928 _Seiichi Manyama_, Feb 24 2017