cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A282972 Number of ways to write n as 4*x^4 + y^2 + z^2 + w^2 with x,y,z,w nonnegative integers such that 79*y^2 - 220*y*z + 205*z^2 is a square.

Original entry on oeis.org

1, 1, 1, 1, 2, 2, 3, 1, 2, 4, 3, 2, 2, 4, 4, 2, 2, 3, 5, 2, 2, 4, 4, 2, 3, 3, 3, 2, 2, 3, 2, 2, 1, 4, 2, 1, 4, 2, 3, 1, 4, 3, 2, 1, 3, 5, 2, 1, 3, 6, 3, 2, 2, 5, 5, 2, 4, 3, 4, 2, 3, 5, 2, 2, 2, 6, 5, 2, 4, 5, 6, 1, 5, 6, 5, 4, 5, 5, 6, 2, 4
Offset: 0

Views

Author

Zhi-Wei Sun, Feb 25 2017

Keywords

Comments

Conjecture: (i) a(n) > 0 for all n = 0,1,2,....
(ii) Any positive integer n can be written as 4*x^4 + y^2 + z^2 + w^2 with x,y,z nonnegative integers and w a positive integer such that 169*y^2 - 444*y*z + 396*z^2 (or 289*y^2 - 654*y*z + 401*z^2) is a square.
This is much stronger than Lagrange's four-square theorem, and we have verified parts (i) and (ii) of the conjecture for n up to 10^7 and 10^6 respectively.
By the linked JNT paper, any nonnegative integer n can be written as 4*x^4 + y^2 + z^2 + w^2 with x,y,z,w integers, and we can also write n as x^2 + y^2 + z^2 + w^2 with x,y,z,w nonnegative integers and (y-z)*(y-2*z) = 0. Whether y = z or y = 2*z, the number 79*y^2 - 220*y*z + 205*z^2 is definitely a square.
See also A282933 for a similar conjecture.

Examples

			a(2) = 1 since 2 = 4*0^4 + 1^2 + 1^2 + 0^2 with 79*1^2 - 220*1*1 + 205*1^2 = 8^2.
a(35) = 1 since 35 = 4*0^4 + 3^2 + 1^2 + 5^2 with 79*3^2 - 220*3*1 + 205*1^2 = 16^2.
a(119) = 1 since 119 = 4*1^4 + 9^2 + 3^2 + 5^2 with 79*9^2 - 220*9*3 + 205*3^2 = 48^2.
a(124) = 1 since 124 = 4*1^4 + 4^2 + 2^2 + 10^2 with 79*4^2 - 220*4*2 + 205*2^2 = 18^2.
a(1564) = 1 since 1564 = 4*3^4 + 14^2 + 30^2 + 12^2 with 79*14^2 - 220*14*30 + 205*30^2 = 328^2.
a(4619) = 1 since 4619 = 4*2^4 + 51^2 + 27^2 + 35^2 with 79*51^2 - 220*51*27 + 205*27^2 = 228^2.
a(6127) = 1 since 6127 = 4*5^4 + 49^2 + 35^2 + 1^2 with 79*49^2 - 220*49*35 + 205*35^2 = 252^2.
a(7119) = 1 since 7119 = 4*1^4 + 51^2 + 17^2 + 65^2 with 79*51^2 - 220*51*17 + 205*17^2 = 272^2.
a(9087) = 1 since 9087 = 4*3^4 + 61^2 + 71^2 + 1^2 with 79*61^2 - 220*61*71 + 205*71^2 = 612^2.
		

Crossrefs

Programs

  • Mathematica
    SQ[n_]:=SQ[n]=IntegerQ[Sqrt[n]]
    Do[r=0;Do[If[SQ[n-4x^4-y^2-z^2]&&SQ[79y^2-220*y*z+205z^2],r=r+1],{x,0,(n/4)^(1/4)},{y,0,Sqrt[n-4x^4]},{z,0,Sqrt[n-4x^4-y^2]}];Print[n," ",r];Continue,{n,0,80}]
Showing 1-1 of 1 results.