A282938 Recursive 2-parameter sequence allowing calculation of the Möbius function (not the same as A266378).
1, -1, 1, -1, -1, 2, -1, 0, 1, -2, 1, 0, -1, 2, -1, -1, 3, -2, -1, 1, -1, 1, 1, 0, -2, 1, 1, -2, 1, 0, -1, 1, -1, 3, -1, 0, -1, -2, 1, 1, 1, -1, -1, 3, -2, -1, 1, -1, 2, -2, 1, 1, 0, 0, -1, -3, 2, 2, 0, 0, -2, 1, 0, 0, 1, -3, 2, 1, -1, 1, -2, 2, -2, 2, -2, -1
Offset: 1
Examples
The first few rows starting from 1 follow: 1 -1 1, -1 -1, 2, -1, 0 1, -2, 1, 0, -1, 2, -1 -1, 3, -2, -1, 1, -1, 1, 1, 0, -2, 1 1, -2, 1, 0, -1, 1, -1, 3, -1, 0, -1, -2, 1, 1, 1, -1 -1, 3, -2, -1, 1, -1, 2, -2, 1, 1, 0, 0, -1, -3, 2, 2, 0, 0, -2, 1, 0, 0
Programs
-
Mathematica
nu[n_]:=(n-1)*(n-2)/2 U[n_, m_] := U[n, m] = If[n > 1, U[n - 1, m - n + 1] - U[n - 1, m], 0] U[1, m_] := U[1, m] = If[m == 0, 1, 0] a[n_, m_] := a[n, m] = If[(m < 0) || (nu[n] < m), 0, a[n - 1, m - n + 1] - a[n - 1, m] - a[n - 1, nu[n - 1]]*U[n - 1, m - 1]] a[1, m_] := a[1, m] = If[m == 0, 1, 0] Table[Table[a[n, m], {m, 0, nu[n]}], {n, 1, 30}] Table[a[n, nu[n]], {n, 1, 50}]
Formula
a(n,m) = a(n-1, m-n+1) - a(n-1, m) - a(n-1, nu(n-1))*U(n-1, m-1),
where U(n,m) are coefficients of A231599, nu(n)=(n-1)*(n-2)/2, a(1,0)=1, a(n,m)=0 if m<0 and m>nu(n).
Möbius(n) = a(n,nu(n)).
Comments