This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A282943 #19 Jan 16 2023 08:08:41 %S A282943 8,12,36,276,408,2208,2816,3168,3912,42665,44685,59973,709968,916773, %T A282943 1832496 %N A282943 Numbers k such that 3*2^k + 1 is a prime factor of a generalized Fermat number 7^(2^m) + 1 for some m. %H A282943 Anders Björn and Hans Riesel, <a href="http://dx.doi.org/10.1090/S0025-5718-98-00891-6">Factors of generalized Fermat numbers</a>, Math. Comp. 67 (1998), no. 221, pp. 441-446. %H A282943 Anders Björn and Hans Riesel, <a href="http://dx.doi.org/10.1090/S0025-5718-05-01816-8">Table errata to "Factors of generalized Fermat numbers"</a>, Math. Comp. 74 (2005), no. 252, p. 2099. %H A282943 Anders Björn and Hans Riesel, <a href="http://dx.doi.org/10.1090/S0025-5718-10-02371-9">Table errata 2 to "Factors of generalized Fermat numbers"</a>, Math. Comp. 80 (2011), pp. 1865-1866. %H A282943 OEIS Wiki, <a href="/wiki/Generalized_Fermat_numbers">Generalized Fermat numbers</a> %t A282943 lst = {}; Do[p = 3*2^n + 1; If[PrimeQ[p] && IntegerQ@Log[2, MultiplicativeOrder[7, p]], AppendTo[lst, n]], {n, 3912}]; lst %o A282943 (Magma) SetDefaultRealField(RealField(400)); IsInteger := func<k | k eq Floor(k)>; [n: n in [2..408] | IsPrime(k) and IsInteger(Log(2, Modorder(7, k))) where k is 3*2^n+1]; %Y A282943 Cf. A078304, A204620, A268657, A268658, A268659, A282944, A268660. %Y A282943 Subsequence of A002253. %K A282943 nonn,hard,more %O A282943 1,1 %A A282943 _Arkadiusz Wesolowski_, Feb 25 2017