This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A282970 #7 Mar 15 2017 20:26:57 %S A282970 1,0,1,0,1,1,1,1,1,1,2,1,2,2,2,3,2,4,3,4,4,4,5,5,5,6,6,7,7,8,9,9,10, %T A282970 10,12,12,13,14,14,17,16,19,19,21,22,23,25,27,27,30,30,34,35,37,40,41, %U A282970 45,46,50,52,55,58,60,65,67,71,75,78,84,86,92,97,100,108,110,118,123,127,137,139,150,154,162 %N A282970 Number of partitions of n into primes of form x^2 + y^2 (A002313). %C A282970 Number of partitions of n into primes congruent to 1 or 2 mod 4. %H A282970 <a href="/index/Par#partN">Index entries for related partition-counting sequences</a> %F A282970 G.f.: Product_{k>=1} 1/(1 - x^A002313(k)). %e A282970 a(10) = 2 because we have [5, 5] and [2, 2, 2, 2, 2]. %t A282970 nmax = 82; CoefficientList[Series[Product[1/(1 - Boole[SquaresR[2, k] != 0 && PrimeQ[k]] x^k), {k, 1, nmax}], {x, 0, nmax}], x] %o A282970 (PARI) Vec(prod(k=1, 82, (1/(1 - (isprime(k) && k%4<3)*x^k))) + O(x^83)) \\ _Indranil Ghosh_, Mar 15 2017 %Y A282970 Cf. A000607, A002313, A024941, A281273. %K A282970 nonn %O A282970 0,11 %A A282970 _Ilya Gutkovskiy_, Feb 25 2017