This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A282971 #7 Mar 15 2017 20:27:03 %S A282971 1,0,1,0,1,1,1,2,1,3,2,4,4,6,7,9,11,15,18,24,29,37,48,58,78,92,124, %T A282971 149,195,243,308,393,490,629,786,1004,1263,1603,2024,2564,3239,4106, %U A282971 5184,6571,8301,10508,13298,16807,21296,26895,34082,43060,54528,68952,87245,110392,139622,176696,223484,282798,357731 %N A282971 Number of compositions (ordered partitions) of n into primes of form x^2 + y^2 (A002313). %C A282971 Number of compositions (ordered partitions) of n into primes congruent to 1 or 2 mod 4. %C A282971 Conjecture: every number > 16 is the sum of at most 4 primes of form x^2 + y^2. %H A282971 <a href="/index/Com#comp">Index entries for sequences related to compositions</a> %F A282971 G.f.: 1/(1 - Sum_{k>=1} x^A002313(k)). %e A282971 a(12) = 4 because we have [5, 5, 2], [5, 2, 5], [2, 2, 5] and [2, 2, 2, 2, 2, 2]. %t A282971 nmax = 60; CoefficientList[Series[1/(1 - Sum[Boole[SquaresR[2, k] != 0 && PrimeQ[k]] x^k, {k, 1, nmax}]), {x, 0, nmax}], x] %o A282971 (PARI) Vec(1/(1 - sum(k=1, 60, (isprime(k) && k%4<3)*x^k)) + O(x^61)) \\ _Indranil Ghosh_, Mar 15 2017 %Y A282971 Cf. A002124, A002313, A023360, A077608, A280917, A282906, A282970. %K A282971 nonn %O A282971 0,8 %A A282971 _Ilya Gutkovskiy_, Feb 25 2017