This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A282974 #37 Jun 16 2025 16:25:46 %S A282974 1,2,6,12,1902,3971,5827,16208,47577 %N A282974 Numbers k such that A011546(k-1) is a prime. %C A282974 Round(k)=floor(k) or floor(k)+1, so if round(k)=floor(k) and floor(k) is a prime number, then round(k) is also prime. Thus 47577 = A060421(6) and 613373 = A060421(8) are also terms. %C A282974 The corresponding primes are in A282973. %C A282974 a(10) > 2^16. - _Lucas A. Brown_, Apr 05 2021 %H A282974 Lucas A. Brown, <a href="https://github.com/lucasaugustus/oeis/blob/main/A282974.py">A282974.py</a> %H A282974 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/Pi-Prime.html">Pi-Prime</a> %t A282974 Do[If[PrimeQ[Round[Pi*10^(n-1)]],Print[n]],{n,17511}] %o A282974 (PARI) default(realprecision, 10^5); x=Pi; %o A282974 is(k) = ispseudoprime(round(x*10^k--)); \\ _Jinyuan Wang_, Mar 27 2020 %Y A282974 Cf. A000796, A005042, A011546, A060421, A282973. %K A282974 nonn,base,more,hard %O A282974 1,2 %A A282974 _XU Pingya_, Feb 25 2017 %E A282974 a(8) and a(9) from _Lucas A. Brown_, Apr 05 2021 %E A282974 Definition corrected by _Lucas A. Brown_, Apr 05 2021