This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A282988 #22 Sep 22 2023 12:26:51 %S A282988 1,2,1,5,1,1,15,4,1,1,52,11,1,1,1,203,41,11,1,1,1,877,162,36,1,1,1,1, %T A282988 4140,715,92,36,1,1,1,1,21147,3425,491,127,1,1,1,1,1,115975,17722, %U A282988 2557,337,127,1,1,1,1,1,678570,98253,11353,793,463,1,1,1,1,1,1 %N A282988 Triangle of partitions of an n-set into boxes of size >= m. %H A282988 Alois P. Heinz, <a href="/A282988/b282988.txt">Rows n = 1..141, flattened</a> %F A282988 T(n,m) = Sum_{i=0..n-m} C(n-1, i+m-1)*T(n-i-m, m). %F A282988 E.g.f. m column of T(n,m) is exp(exp(x)-Sum_{k=0..m} 1/k!x^k). %e A282988 Triangle T(n,m) begins: %e A282988 1; %e A282988 2, 1; %e A282988 5, 1, 1; %e A282988 15, 4, 1, 1; %e A282988 52, 11, 1, 1, 1; %e A282988 203, 41, 11, 1, 1, 1; %e A282988 877, 162, 36, 1, 1, 1, 1; %e A282988 ... %p A282988 T:= proc(n, k) option remember; `if`(n=0, 1, add( %p A282988 T(n-j, k)*binomial(n-1, j-1), j=k..n)) %p A282988 end: %p A282988 seq(seq(T(n, k), k=1..n), n=1..14); # _Alois P. Heinz_, Sep 28 2017 %t A282988 T[n_, m_] := T[n, m] = Which[Or[n == m, n == 0], 1, m == 0, 0, True, Sum[Binomial[n - 1, i + m - 1] T[n - i - m, m], {i, 0, n - m}]]; Table[T[n, m], {n, 11}, {m, n}] // Flatten (* _Michael De Vlieger_, Feb 26 2017 *) %o A282988 (Maxima) %o A282988 T(n,m):=if n=m or n=0 then 1 else if m=0 then 0 else sum(binomial(n-1, i+m-1)*T(n-i-m,m), i, 0, n-m); %Y A282988 Cf. A000110, A000296, A006505, A057837, A057814, A182931, A260878. %K A282988 nonn,tabl %O A282988 1,2 %A A282988 _Vladimir Kruchinin_, Feb 26 2017