A282990 Number of nX2 0..1 arrays with no 1 equal to more than one of its horizontal and vertical neighbors.
4, 11, 33, 98, 291, 865, 2570, 7637, 22693, 67432, 200373, 595405, 1769236, 5257255, 15621845, 46420050, 137936399, 409875693, 1217938738, 3619084505, 10754048825, 31955475472, 94955158681, 282157659273, 838426745764, 2491370993875
Offset: 1
Keywords
Examples
Some solutions for n=5 ..0..0. .1..1. .1..0. .0..0. .1..1. .1..0. .0..1. .1..0. .1..0. .0..0 ..0..1. .0..0. .1..0. .1..0. .0..0. .0..0. .1..0. .1..0. .0..0. .0..1 ..1..0. .0..0. .0..1. .0..0. .0..0. .0..1. .0..0. .0..0. .0..0. .0..0 ..0..1. .0..0. .1..0. .1..0. .0..0. .0..0. .0..0. .0..0. .0..1. .0..0 ..0..0. .0..0. .0..0. .1..0. .1..1. .0..1. .0..0. .1..1. .1..0. .1..1
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Formula
Empirical: a(n) = 2*a(n-1) +3*a(n-2) -a(n-4).
Empirical: G.f.: -x*(-4-3*x+x^2+x^3)/(1-2*x-3*x^2+x^4) . - R. J. Mathar, Mar 02 2017
Comments