A282991 Number of nX3 0..1 arrays with no 1 equal to more than one of its horizontal and vertical neighbors.
7, 33, 163, 803, 3971, 19587, 96693, 477297, 2355925, 11629027, 57401721, 283338413, 1398577069, 6903468049, 34075967931, 168201202963, 830252119477, 4098178655825, 20228877377719, 99851059281979, 492871346862069
Offset: 1
Keywords
Examples
Some solutions for n=5 ..0..0..1. .0..1..0. .0..0..0. .1..0..1. .0..1..0. .1..0..0. .1..0..0 ..1..0..1. .0..1..0. .1..0..0. .0..0..1. .1..0..1. .0..0..1. .0..0..0 ..0..0..0. .1..0..1. .0..1..0. .0..1..0. .1..0..0. .0..1..0. .0..1..0 ..0..1..0. .1..0..1. .0..1..0. .0..1..0. .0..1..1. .0..1..0. .0..0..0 ..1..0..0. .0..0..0. .1..0..1. .1..0..0. .0..0..0. .1..0..1. .0..0..1
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Crossrefs
Cf. A282996.
Formula
Empirical: a(n) = 2*a(n-1) +10*a(n-2) +20*a(n-3) +13*a(n-4) -9*a(n-5) -10*a(n-6) -3*a(n-7) -a(n-8) +a(n-9).
Empirical: G.f.: -x*(7+19*x+27*x^2+7*x^3-16*x^4-11*x^5-3*x^6+x^8) / ( (1+x)*(x^8-2*x^7-x^6-9*x^5+13*x^3+7*x^2+3*x-1) ). - R. J. Mathar, Mar 02 2017
Comments