A282992 Number of n X 4 0..1 arrays with no 1 equal to more than one of its horizontal and vertical neighbors.
13, 98, 803, 6547, 53389, 435027, 3546870, 28911809, 235681253, 1921212987, 15661161199, 127665372304, 1040691953095, 8483425185009, 69154476414585, 563727672983607, 4595348063993330, 37459973798636833, 305363079492664703, 2489233196683020273, 20291522858244231419
Offset: 1
Keywords
Examples
Some solutions for n=5: ..0..0..1..0. .0..0..0..1. .1..0..1..0. .1..0..0..1. .1..0..0..1 ..0..0..1..0. .1..1..0..0. .0..0..0..1. .1..0..0..0. .0..0..1..0 ..0..1..0..0. .0..0..1..1. .1..0..0..0. .0..0..0..1. .0..1..0..0 ..0..0..0..0. .1..0..0..0. .0..0..0..1. .1..1..0..1. .1..0..0..1 ..1..1..0..1. .0..0..1..1. .1..1..0..1. .0..0..1..0. .0..0..0..0
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Crossrefs
Cf. A282996.
Formula
Empirical: a(n) = 4*a(n-1) +27*a(n-2) +59*a(n-3) -10*a(n-4) -134*a(n-5) +12*a(n-6) +43*a(n-7) -55*a(n-8) +42*a(n-9) -90*a(n-10) +58*a(n-11) -30*a(n-12) +6*a(n-13) -2*a(n-14) +a(n-15).
Comments