cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A282990 Number of nX2 0..1 arrays with no 1 equal to more than one of its horizontal and vertical neighbors.

Original entry on oeis.org

4, 11, 33, 98, 291, 865, 2570, 7637, 22693, 67432, 200373, 595405, 1769236, 5257255, 15621845, 46420050, 137936399, 409875693, 1217938738, 3619084505, 10754048825, 31955475472, 94955158681, 282157659273, 838426745764, 2491370993875
Offset: 1

Views

Author

R. H. Hardin, Feb 26 2017

Keywords

Comments

Column 2 of A282996, A295275.

Examples

			Some solutions for n=5
..0..0. .1..1. .1..0. .0..0. .1..1. .1..0. .0..1. .1..0. .1..0. .0..0
..0..1. .0..0. .1..0. .1..0. .0..0. .0..0. .1..0. .1..0. .0..0. .0..1
..1..0. .0..0. .0..1. .0..0. .0..0. .0..1. .0..0. .0..0. .0..0. .0..0
..0..1. .0..0. .1..0. .1..0. .0..0. .0..0. .0..0. .0..0. .0..1. .0..0
..0..0. .0..0. .0..0. .1..0. .1..1. .0..1. .0..0. .1..1. .1..0. .1..1
		

Crossrefs

Formula

Empirical: a(n) = 2*a(n-1) +3*a(n-2) -a(n-4).
Empirical: G.f.: -x*(-4-3*x+x^2+x^3)/(1-2*x-3*x^2+x^4) . - R. J. Mathar, Mar 02 2017

A282991 Number of nX3 0..1 arrays with no 1 equal to more than one of its horizontal and vertical neighbors.

Original entry on oeis.org

7, 33, 163, 803, 3971, 19587, 96693, 477297, 2355925, 11629027, 57401721, 283338413, 1398577069, 6903468049, 34075967931, 168201202963, 830252119477, 4098178655825, 20228877377719, 99851059281979, 492871346862069
Offset: 1

Views

Author

R. H. Hardin, Feb 26 2017

Keywords

Comments

Column 3 of A282996.

Examples

			Some solutions for n=5
..0..0..1. .0..1..0. .0..0..0. .1..0..1. .0..1..0. .1..0..0. .1..0..0
..1..0..1. .0..1..0. .1..0..0. .0..0..1. .1..0..1. .0..0..1. .0..0..0
..0..0..0. .1..0..1. .0..1..0. .0..1..0. .1..0..0. .0..1..0. .0..1..0
..0..1..0. .1..0..1. .0..1..0. .0..1..0. .0..1..1. .0..1..0. .0..0..0
..1..0..0. .0..0..0. .1..0..1. .1..0..0. .0..0..0. .1..0..1. .0..0..1
		

Crossrefs

Cf. A282996.

Formula

Empirical: a(n) = 2*a(n-1) +10*a(n-2) +20*a(n-3) +13*a(n-4) -9*a(n-5) -10*a(n-6) -3*a(n-7) -a(n-8) +a(n-9).
Empirical: G.f.: -x*(7+19*x+27*x^2+7*x^3-16*x^4-11*x^5-3*x^6+x^8) / ( (1+x)*(x^8-2*x^7-x^6-9*x^5+13*x^3+7*x^2+3*x-1) ). - R. J. Mathar, Mar 02 2017

A282992 Number of n X 4 0..1 arrays with no 1 equal to more than one of its horizontal and vertical neighbors.

Original entry on oeis.org

13, 98, 803, 6547, 53389, 435027, 3546870, 28911809, 235681253, 1921212987, 15661161199, 127665372304, 1040691953095, 8483425185009, 69154476414585, 563727672983607, 4595348063993330, 37459973798636833, 305363079492664703, 2489233196683020273, 20291522858244231419
Offset: 1

Views

Author

R. H. Hardin, Feb 26 2017

Keywords

Comments

Column 4 of A282996.

Examples

			Some solutions for n=5:
..0..0..1..0. .0..0..0..1. .1..0..1..0. .1..0..0..1. .1..0..0..1
..0..0..1..0. .1..1..0..0. .0..0..0..1. .1..0..0..0. .0..0..1..0
..0..1..0..0. .0..0..1..1. .1..0..0..0. .0..0..0..1. .0..1..0..0
..0..0..0..0. .1..0..0..0. .0..0..0..1. .1..1..0..1. .1..0..0..1
..1..1..0..1. .0..0..1..1. .1..1..0..1. .0..0..1..0. .0..0..0..0
		

Crossrefs

Cf. A282996.

Formula

Empirical: a(n) = 4*a(n-1) +27*a(n-2) +59*a(n-3) -10*a(n-4) -134*a(n-5) +12*a(n-6) +43*a(n-7) -55*a(n-8) +42*a(n-9) -90*a(n-10) +58*a(n-11) -30*a(n-12) +6*a(n-13) -2*a(n-14) +a(n-15).

A282993 Number of nX5 0..1 arrays with no 1 equal to more than one of its horizontal and vertical neighbors.

Original entry on oeis.org

24, 291, 3971, 53389, 720417, 9706901, 130854309, 1763845523, 23775564134, 320481684651, 4319920870201, 58230152122968, 784910642479634, 10580166410594089, 142614855902267366, 1922370270814992840
Offset: 1

Views

Author

R. H. Hardin, Feb 26 2017

Keywords

Comments

Column 5 of A282996.

Examples

			Some solutions for n=5
..0..1..0..0..0. .1..0..0..0..1. .1..0..0..1..0. .1..0..0..0..0
..0..0..0..0..1. .0..0..1..0..0. .0..0..1..0..1. .0..0..0..0..1
..0..0..1..0..0. .0..0..0..0..0. .0..1..0..0..0. .0..0..0..0..1
..0..1..0..0..1. .1..0..0..0..1. .0..1..0..0..1. .1..0..1..1..0
..1..0..1..0..1. .0..1..0..0..0. .0..0..0..0..0. .0..0..0..0..1
		

Crossrefs

Cf. A282996.

Formula

Empirical: a(n) = 5*a(n-1) +82*a(n-2) +424*a(n-3) +433*a(n-4) -3117*a(n-5) -9658*a(n-6) +8224*a(n-7) +43423*a(n-8) -39527*a(n-9) +4996*a(n-10) -8476*a(n-11) -208460*a(n-12) +596155*a(n-13) -915253*a(n-14) +1321254*a(n-15) -1511538*a(n-16) +1194611*a(n-17) -744475*a(n-18) +454071*a(n-19) -175360*a(n-20) +56609*a(n-21) -83755*a(n-22) -6781*a(n-23) +61170*a(n-24) -17072*a(n-25) -8350*a(n-26) -2485*a(n-27) +1059*a(n-28) +2774*a(n-29) -313*a(n-30) -159*a(n-31) -202*a(n-32) +69*a(n-33) +7*a(n-34) +a(n-35) -a(n-36)

A282994 Number of nX6 0..1 arrays with no 1 equal to more than one of its horizontal and vertical neighbors.

Original entry on oeis.org

44, 865, 19587, 435027, 9706901, 216173426, 4817792042, 107354061547, 2392171690343, 53305366529469, 1187812241964789, 26468219711250515, 589796016644509708, 13142526595924490676, 292857199578979575159
Offset: 1

Views

Author

R. H. Hardin, Feb 26 2017

Keywords

Comments

Column 6 of A282996.

Examples

			Some solutions for n=5
..0..0..0..0..0..0. .0..0..0..0..0..0. .0..0..0..0..1..1. .0..0..0..1..1..0
..0..0..0..1..0..1. .0..0..0..1..0..0. .0..0..0..0..0..0. .0..0..0..0..0..0
..0..0..0..0..0..1. .0..0..0..1..0..0. .0..0..0..0..1..0. .0..0..0..0..0..1
..0..0..0..1..0..0. .0..0..0..0..0..0. .0..1..0..0..0..1. .0..1..1..0..0..1
..1..0..0..1..0..1. .1..0..0..0..1..0. .0..0..1..1..0..1. .1..0..0..0..1..0
		

Crossrefs

Cf. A282996.

Formula

Empirical recurrence of order 69 (see link above)

A282995 Number of nX7 0..1 arrays with no 1 equal to more than one of its horizontal and vertical neighbors.

Original entry on oeis.org

81, 2570, 96693, 3546870, 130854309, 4817792042, 177509416175, 6539125324144, 240894164469261, 8874303766960833, 326920126439954151, 12043397390708228297, 443666302338469244577, 16344206879501911050248
Offset: 1

Views

Author

R. H. Hardin, Feb 26 2017

Keywords

Comments

Column 7 of A282996.

Examples

			Some solutions for n=5
..0..0..0..0..1..0..1. .0..0..0..0..1..0..1. .0..0..0..1..0..0..0
..0..0..0..1..0..0..0. .0..0..0..0..0..0..1. .0..0..0..0..1..0..0
..0..0..0..0..1..0..1. .0..0..1..1..0..0..0. .0..0..1..0..0..0..0
..0..0..0..0..1..0..0. .0..0..0..0..0..0..1. .0..0..0..0..1..0..1
..0..0..0..1..0..1..0. .0..0..0..0..1..1..0. .0..0..0..0..0..0..1
		

Crossrefs

Cf. A282996.
Showing 1-6 of 6 results.