cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A283018 Primes which are the sum of three positive 7th powers.

This page as a plain text file.
%I A283018 #9 Feb 27 2017 00:56:02
%S A283018 3,257,82499,823799,1119863,2099467,4782971,5063033,5608699,6880249,
%T A283018 7160057,10018571,10078253,10094509,10279937,10389481,10823671,
%U A283018 19503683,20002187,20388839,24782969,31584323,35850379,36189869,37931147,50614777,57416131,62765029,64845797,68355029,71663617,73028453
%N A283018 Primes which are the sum of three positive 7th powers.
%C A283018 Primes of form x^7 + y^7 + z^7 where x, y, z > 0.
%H A283018 Robert Israel, <a href="/A283018/b283018.txt">Table of n, a(n) for n = 1..10000</a>
%e A283018 3 = 1^7 + 1^7 + 1^7;
%e A283018 257 = 1^7 + 2^7 + 2^7;
%e A283018 82499 = 3^7 + 3^7 + 5^7, etc.
%p A283018 N:= 10^9: # to get all terms <= N
%p A283018 Res:= {}:
%p A283018 for x from 1 to floor(N^(1/7)) do
%p A283018   for y from 1 to min(x, floor((N-x^7)^(1/7))) do
%p A283018     for z from 1 to min(y, floor((N-x^7-y^7)^(1/7))) do
%p A283018       p:= x^7 + y^7 + z^7;
%p A283018       if isprime(p) then Res:= Res union {p} fi
%p A283018 od od od:
%p A283018 sort(convert(Res,list)); # _Robert Israel_, Feb 26 2017
%t A283018 nn = 14; Select[Union[Plus @@@ (Tuples[Range[nn], {3}]^7)], # <= nn^7 && PrimeQ[#] &]
%o A283018 (PARI) list(lim)=my(v=List(),x7,y7,t,p); for(x=1,sqrtnint(lim\3,7), x7=x^7; for(y=x,sqrtnint((lim-x7)\2,7), y7=y^7; t=x7+y7; forstep(z=y+(x+1)%2,sqrtnint((lim-t)\1,7),2, if(isprime(p=t+z^7), listput(v,p))))); Set(v) \\ _Charles R Greathouse IV_, Feb 27 2017
%Y A283018 Cf. A001015, A003370, A007490, A085317, A085318, A085319, A283017, A283019.
%K A283018 nonn
%O A283018 1,1
%A A283018 _Ilya Gutkovskiy_, Feb 26 2017