A283036 Number of n X 2 0..1 arrays with no 1 equal to more than one of its horizontal and vertical neighbors, with the exception of exactly one element.
0, 4, 16, 68, 256, 924, 3232, 11044, 37104, 122984, 403280, 1310760, 4228960, 13558932, 43239776, 137251068, 433883696, 1366668772, 4290998336, 13433966724, 41949331616, 130685405648, 406258440928, 1260465716560, 3903760205760
Offset: 1
Keywords
Examples
Some solutions for n=4 ..1..0. .1..1. .1..1. .1..0. .1..1. .1..1. .0..1. .0..0. .1..1. .1..1 ..0..0. .0..1. .1..0. .1..1. .0..0. .0..1. .0..1. .0..1. .1..0. .0..0 ..1..1. .0..0. .0..1. .1..0. .0..1. .0..0. .0..1. .1..0. .0..0. .1..0 ..0..1. .1..0. .0..1. .0..1. .1..1. .0..1. .1..0. .1..1. .1..0. .1..1
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Crossrefs
Cf. A283042.
Formula
Empirical: a(n) = 4*a(n-1) +2*a(n-2) -12*a(n-3) -11*a(n-4) +4*a(n-5) +6*a(n-6) -a(n-8).
Empirical: G.f.: -4*x^2*(x-1)*(1+x)/(x^4-3*x^2-2*x+1)^2. - R. J. Mathar, Mar 02 2017
Comments