A283037 Number of nX3 0..1 arrays with no 1 equal to more than one of its horizontal and vertical neighbors, with the exception of exactly one element.
1, 16, 119, 818, 5065, 30378, 175963, 997302, 5559013, 30578068, 166427637, 897975464, 4809947903, 25605505484, 135587794041, 714668815274, 3751742509465, 19624971865578, 102330051488077, 532058283113570
Offset: 1
Keywords
Examples
Some solutions for n=4 ..0..0..0. .1..0..0. .1..0..0. .0..1..1. .0..0..0. .1..0..1. .0..0..1 ..0..0..0. .0..0..1. .0..0..0. .1..0..0. .0..0..1. .0..1..0. .1..0..1 ..0..1..1. .0..1..0. .0..1..0. .0..0..0. .1..0..1. .1..0..0. .1..1..0 ..0..0..1. .0..1..1. .1..1..1. .1..1..1. .1..1..0. .1..1..0. .1..0..0
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Crossrefs
Cf. A283042.
Formula
Empirical: a(n) = 4*a(n-1) +16*a(n-2) -154*a(n-4) -470*a(n-5) -644*a(n-6) -306*a(n-7) +401*a(n-8) +700*a(n-9) +315*a(n-10) -82*a(n-11) -168*a(n-12) -104*a(n-13) -11*a(n-14) +14*a(n-15) +5*a(n-16) +2*a(n-17) -a(n-18)
Comments