A283038 Number of nX4 0..1 arrays with no 1 equal to more than one of its horizontal and vertical neighbors, with the exception of exactly one element.
2, 68, 818, 9152, 94368, 931844, 8912378, 83420984, 767704036, 6973000128, 62669779812, 558371394860, 4938938283902, 43417600038648, 379661067157816, 3304658457345168, 28648616561102224, 247474652799713212
Offset: 1
Keywords
Examples
Some solutions for n=4 ..1..0..1..0. .0..0..1..1. .0..0..1..1. .1..0..1..0. .1..1..0..1 ..1..1..0..0. .1..0..1..0. .0..1..0..0. .1..1..0..0. .0..1..0..0 ..0..0..1..0. .0..0..0..1. .1..1..0..1. .0..0..1..0. .0..0..0..1 ..1..1..0..1. .0..0..1..0. .0..1..0..1. .0..1..0..1. .0..0..0..0
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Crossrefs
Cf. A283042.
Formula
Empirical: a(n) = 8*a(n-1) +38*a(n-2) -98*a(n-3) -1221*a(n-4) -3374*a(n-5) -1845*a(n-6) +8406*a(n-7) +14610*a(n-8) -5894*a(n-9) -20336*a(n-10) +9134*a(n-11) +9660*a(n-12) -7192*a(n-13) +3651*a(n-14) -16004*a(n-15) +9859*a(n-16) +3230*a(n-17) -14482*a(n-18) +15860*a(n-19) -16472*a(n-20) +13768*a(n-21) -9574*a(n-22) +4838*a(n-23) -2040*a(n-24) +772*a(n-25) -272*a(n-26) +84*a(n-27) -16*a(n-28) +4*a(n-29) -a(n-30)
Comments