A283039 Number of n X 5 0..1 arrays with no 1 equal to more than one of its horizontal and vertical neighbors, with the exception of exactly one element.
5, 256, 5065, 94368, 1604067, 26180826, 414085368, 6406597648, 97480211225, 1463896864692, 21753273510360, 320461563276470, 4686814034042643, 68124911104620870, 984999389958209910, 14176505420268232960, 203212970311422645415, 2902589960282552892838, 41327736536350218694304
Offset: 1
Examples
Some solutions for n=4: ..0..0..0..1..0. .0..1..0..0..1. .1..0..1..1..0. .0..0..1..0..1 ..0..0..1..0..0. .0..0..0..0..0. .1..0..0..0..1. .1..0..0..0..1 ..0..1..0..0..1. .1..0..0..1..1. .1..0..0..0..0. .0..0..0..1..0 ..0..1..1..0..0. .0..0..0..0..1. .0..0..0..0..1. .0..1..0..1..1
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
- R. H. Hardin, Empirical recurrence of order 72
Crossrefs
Column 5 of A283042.
Formula
Empirical recurrence of order 72 (see link above).