This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A283054 #30 Feb 29 2020 17:59:37 %S A283054 1,1,2,1,3,4,1,4,8,9,1,5,13,22,23,1,6,19,41,64,65,1,7,26,67,131,196, %T A283054 197,1,8,34,101,232,428,625,626,1,9,43,144,376,804,1429,2055,2056,1, %U A283054 10,53,197,573,1377,2806,4861,6917,6918,1,11,64,261,834,2211,5017,9878,16795,23713,23714,1,12,76,337,1171,3382,8399,18277,35072,58785,82499,82500 %N A283054 Triangle read by rows: T(n,k) = T(n,k-1) + T(n-1,k), T(n,0)=1, T(n,n) = T(n,n-1) + 1. %C A283054 The left diagonals form polynomial sequences. This is due to the observation that diagonal 0 D_0(x) = 1, and D_n(x) = D_n(x-1)+D_(n-1)(x+1), with D_n(-1) = 1 which is a recurrence that can be solved. %C A283054 These polynomials begin 1, x+2, (x(x+7)+8)/2, (x(x(x+15)+62)+54)/6, (x(x(x(x+26)+227)+730)+552)/24, etc., the first 3 of which correspond to A000012(n), A000027(n+2), and A034856(n+2), respectively. %C A283054 The rightmost diagonal appears to follow A014137(n). The second rightmost appears to follow A014138(n+1), the third appears to follow A001453(n+2), the fourth appears to follow A114277(n), and the fifth appears to follow A143955(n+3). %C A283054 A closed-form formula for T(n,k) would be very desirable. %H A283054 Ely Golden, <a href="/A283054/b283054.txt">Rows n = 0..124 of triangle, flattened</a> %H A283054 Ely Golden, <a href="/A283054/a283054.java.txt">Java program for generating the triangle</a> %H A283054 Ely Golden, <a href="/A283054/a283054_2.sagews.txt">Sage program for computing the polynomial of the n-th left diagonal</a> %e A283054 First 7 rows: %e A283054 1; %e A283054 1, 2; %e A283054 1, 3, 4; %e A283054 1, 4, 8, 9; %e A283054 1, 5, 13, 22, 23; %e A283054 1, 6, 19, 41, 64, 65; %e A283054 1, 7, 26, 67, 131, 196, 197; %t A283054 T[0, 0] = 1; T[n_, k_] := T[n, k] = Which[k == 0, 1, k == n, T[n, n - 1] + 1, True, T[n, k - 1] + T[n - 1, k]]; Table[T[n, k], {n, 0, 11}, {k, 0, n}] // Flatten (* _Michael De Vlieger_, Feb 27 2017 *) %o A283054 (SageMath) %o A283054 def sideTriangleAt(a,b): %o A283054 if(b==0): return 1 %o A283054 elif(b==a): return sideTriangleAt(a,b-1)+1 %o A283054 else: return sideTriangleAt(a,b-1)+sideTriangleAt(a-1,b) %o A283054 def sideTriangle(size): %o A283054 li=[] %o A283054 for c in range(size): %o A283054 for d in range(c+1): %o A283054 if(d==0): li.append([1]) %o A283054 elif(d==c): li[c].append(li[c][d-1]+1) %o A283054 else: li[c].append(li[c][d-1]+li[c-1][d]) %o A283054 return li %o A283054 trig=sideTriangle(125) %o A283054 for c in range(len(trig)): %o A283054 print(str(trig[c])[1:-1].replace(",","")) %o A283054 (PARI) T(n,k)=if(k==0,return(1));if(k==n,return(T(n,n-1)+1));T(n,k-1)+T(n-1,k) %o A283054 for(n=0,10,for(k=0,n,print1(T(n,k),", "))) \\ _Derek Orr_, Feb 28 2017 %K A283054 nonn,tabl %O A283054 0,3 %A A283054 _Ely Golden_, Feb 27 2017