This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A283091 #12 Apr 06 2017 21:22:27 %S A283091 3,7,15,31,63,127,217,511,1023,2047,3255,8001,11811,32767,63457, %T A283091 131071,262143,520065,1048575,2097151,4194303,8388607,16766977, %U A283091 33554431,67074049,133693185,268435455,536870911,1073215489,2147483647,4292868097,8589934591,17179312129 %N A283091 Maximal order of the trinomials of degree n over GF(2). %C A283091 a(n) is also the maximum length of binary linear recurrence relation b(x) = b(x-m) + b(x-n) mod 2 for all 0 < m < n. Knuth cites unpublished work of G. J. Mitchell & D. P. Moore showing that a(55) = 2^55 - 1 via m = 24. %D A283091 D. E. Knuth, The Art of Computer Programming. Vol. 2, Seminumerical Algorithms. %H A283091 Hiroaki Yamanouchi, <a href="/A283091/b283091.txt">Table of n, a(n) for n = 2..100</a> %H A283091 <a href="/index/Ps#PRN">Index entries for sequences related to pseudo-random numbers.</a> %F A283091 a(n) <= 2^n - 1, with equality if and only if n is a term of A073726. %o A283091 (PARI) isperiodic(v)=for(k=1,#v-3, for(i=k+1,#v, if(v[i]!=v[i-k], next(2))); return(k)) %o A283091 T(n,m,len=2^n+7)=my(v=vectorsmall(len)); v[n]=1; for(k=n+1,#v, v[k]=(v[k-n]+v[k-m])%2); v=isperiodic(v); if(v,v,T(n,m,2*len+1)) %o A283091 a(n)=my(mx=T(n,1)); for(m=2,n-1,mx=max(T(n,m),mx)); mx %Y A283091 Cf. A073726. %K A283091 nonn %O A283091 2,1 %A A283091 _Charles R Greathouse IV_, Feb 28 2017 %E A283091 a(26)-a(34) from _Hiroaki Yamanouchi_, Apr 06 2017