This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A283101 #13 Feb 28 2017 22:42:45 %S A283101 0,0,4,344,8760,157504,2388204,32737984,419969088,5141235840, %T A283101 60795581132,700024311536,7892352548080 %N A283101 Numbers of A'Campo forests of degree n>2 and co-dimension 3. %C A283101 We can prove this using generating functions. %D A283101 P. Flajolet R. Sedgewick, Analytic Combinatorics, Cambridge University Press (2009) %H A283101 N. Combe, V. Jugé, <a href="http://arxiv.org/abs/1702.07672">Counting bi-colored A'Campo forests</a>, arXiv:1702.07672 [Math.AG], 2017. %F A283101 a(n) is obtained by using the generating function N_{1} =1+yN_{2}^4 and (1-N_{2} +2yN_{2}^4 -yN_{2}^{5} +xyN_{2}^{6} +y^{2}N_{2}^{8})(1+yN_{2}^{4}-xyN_{2}^{5})+x^3y^{2}N_{2}^{9} =0, where N_{1}(x,y)=\sum_{n}N_{1}'(3,n)x^{3}y^{n} and N_{1}'(3,n) is the number of A'Campo forests with co-dimension 3; N_{3}(x,y)=\sum_{n}N_{3}'(3,n)x^{3}y^{n} where N_{3}'(3,n) is the number of partial configurations. %e A283101 For n=3, there exist four A'Campo forests of co-dimension 3 and degree 3. %e A283101 For n=2 there do not exist any A'Campo forests of co-dimension 3. %K A283101 nonn %O A283101 1,3 %A A283101 _Noemie Combe_, Feb 28 2017