This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A283107 #20 Nov 21 2024 21:25:57 %S A283107 2,5,17,257,1025,16385,65537,1048577,67108865,268435457,17179869185, %T A283107 274877906945,1099511627777,17592186044417,1125899906842625, %U A283107 72057594037927937,288230376151711745 %N A283107 Numbers k such that tau(4*(k - 1)) is prime. %C A283107 Conjecturally, a supersequence of A281312. %C A283107 The conjecture is true: the formula at A281312 implies that the number of divisors of 4*A281312(n) - 4 is A000043(n+1). - _Charles R Greathouse IV_, Mar 01 2017 %H A283107 Charles R Greathouse IV, <a href="/A283107/b283107.txt">Table of n, a(n) for n = 1..467</a> %t A283107 Select[Range[2, 10^7], PrimeQ@ DivisorSigma[0, 4 (# - 1)] &] (* _Michael De Vlieger_, Feb 28 2017 *) %o A283107 (Magma) [n: n in [2..1100000] | IsPrime(NumberOfDivisors(4*(n-1)))]; %o A283107 (PARI) is(n)=isprime(numdiv(4*n-4)) \\ _Charles R Greathouse IV_, Feb 28 2017 %o A283107 (PARI) list(lim)=my(v=List()); forprime(p=3,logint(lim\1*8-8,2), listput(v,2^(p-3)+1)); Vec(v) \\ _Charles R Greathouse IV_, Mar 01 2017 %Y A283107 Supersequence of A281312. %Y A283107 Cf. A000005, A258429. %K A283107 nonn %O A283107 1,1 %A A283107 _Juri-Stepan Gerasimov_, Feb 28 2017 %E A283107 a(4), a(9)-a(17) from _Charles R Greathouse IV_, Mar 01 2017