cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A283111 Number of partitions of 2^n into n parts.

This page as a plain text file.
%I A283111 #21 Apr 07 2025 09:52:16
%S A283111 0,1,2,5,34,480,17180,1652171,461346215,396507897335,1093817527528804,
%T A283111 9967640563717565125,306039783996035518230753,
%U A283111 32112037153481933712774822566,11641561173234351448063113301394401,14714021393940105546041647309452434048219,65349955097974241266907510524139945537027169461
%N A283111 Number of partitions of 2^n into n parts.
%F A283111 a(n) = P(2^n,n), where P(x, y) is the number of partitions of x into y parts.
%F A283111 a(n) = A008284(2^n,n). - _R. J. Mathar_, Mar 10 2017
%t A283111 a[n_] := SeriesCoefficient[1/Product[1 - x^k, {k, 1, n}], {x, 0, 2^n - n}]; Table[an = a[n]; Print["a(", n, ") = ", an]; an, {n, 0, 14}] (* _Jean-François Alcover_, Mar 01 2017 *)
%o A283111 (Sage) def a283111(n): return Partitions(2**n, length=n).cardinality() # _Max Alekseyev_, Apr 07 2025
%Y A283111 Cf. A008284.
%K A283111 nonn
%O A283111 0,3
%A A283111 _Francois Alcover_, Feb 28 2017
%E A283111 a(15)-a(16) from _Max Alekseyev_, Apr 07 2025