cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A283115 Number of nonequivalent ways (mod D_3) to place 4 points on an n X n X n triangular grid so that no two of them are on the same row, column or diagonal.

Original entry on oeis.org

0, 0, 0, 0, 0, 3, 40, 242, 1038, 3504, 9998, 25158, 57410, 121023, 239148, 447552, 799764, 1373400, 2278290, 3666036, 5742396, 8781111, 13141326, 19287246, 27811906, 39463424, 55177122, 76109826, 103681214, 139618479, 186008654, 245354424, 320640264, 415401264
Offset: 1

Views

Author

Heinrich Ludwig, Mar 01 2017

Keywords

Comments

In terms of triangular chess: Number of nonequivalent ways (mod D_3) to arrange 4 nonattacking rooks on an n X n X n board.
Reflections and rotations of placements are not counted. For numbers if they are to be counted see A193982.

Examples

			There are a(6) = 3 ways to place 4 points on an 6 X 6 X 6 grid, rotations and reflections ignored:
       .             X             .
      . X           . .           X .
     . . .         . . .         . . X
    . . X .       . . X .       . . . .
   X . . . .     . X . . .     . X . . .
  . . . X . .   . . . X . .   . . . X . .
		

Crossrefs

Cf. A193982, A283113, A283114 (3 points), A283116 (5 points).

Programs

  • Mathematica
    Table[(5 n^8 - 100 n^7 + 810 n^6 - 3336 n^5 + 6940 n^4 - 5120 n^3 - 4080 n^2 + 6336 n)/11520 + Boole[OddQ@ n] (4 n^3 - 38 n^2 + 144 n - 207)/768 + Boole[Mod[n, 3] == 1] (n^2 - 6 n + 8)/18 - Boole[Mod[n, 6] == 1]/6, {n, 34}] (* or *)
    Rest@ CoefficientList[Series[x^6*(3 + 31 x + 122 x^2 + 330 x^3 + 630 x^4 + 920 x^5 + 1128 x^6 + 1224 x^7 + 1124 x^8 + 924 x^9 + 644 x^10 + 336 x^11 + 117 x^12 + 27 x^13)/((1 - x)^9*(1 + x)^4*(1 - x + x^2) (1 + x + x^2)^3), {x, 0, 34}], x] (* Michael De Vlieger, Mar 01 2017 *)
  • PARI
    concat(vector(5), Vec(x^6*(3 + 31*x + 122*x^2 + 330*x^3 + 630*x^4 + 920*x^5 + 1128*x^6 + 1224*x^7 + 1124*x^8 + 924*x^9 + 644*x^10 + 336*x^11 + 117*x^12 + 27*x^13) / ((1 - x)^9*(1 + x)^4*(1 - x + x^2)*(1 + x + x^2)^3) + O(x^40))) \\ Colin Barker, Mar 01 2017

Formula

a(n) = (5*n^8 - 100*n^7 + 810*n^6 - 3336*n^5 + 6940*n^4 - 5120*n^3 - 4080*n^2 + 6336*n)/11520 + IF(MOD(n, 2) = 1, 4*n^3 - 38*n^2 + 144*n - 207)/768 + IF(MOD(n, 3) = 1, n^2 - 6*n + 8)/18 + IF(MOD(n, 6) = 1, -1)/6.
G.f.: x^6*(3 + 31*x + 122*x^2 + 330*x^3 + 630*x^4 + 920*x^5 + 1128*x^6 + 1224*x^7 + 1124*x^8 + 924*x^9 + 644*x^10 + 336*x^11 + 117*x^12 + 27*x^13) / ((1 - x)^9*(1 + x)^4*(1 - x + x^2)*(1 + x + x^2)^3). - Colin Barker, Mar 01 2017