This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A283149 #14 Apr 30 2021 07:01:13 %S A283149 1,1,2,1,1,2,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, %T A283149 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, %U A283149 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,1,1 %N A283149 Largest k such that (p-1)! == -1 (mod p^k), where p = prime(n). %C A283149 a(n) > 1 iff A002068(n) = 0, i.e., iff p is a Wilson prime (A007540). %C A283149 Is a(n) < 3 for all n? %H A283149 Robert Israel, <a href="/A283149/b283149.txt">Table of n, a(n) for n = 1..10000</a> %p A283149 f:= proc(n) local p; %p A283149 p:= ithprime(n); %p A283149 padic:-ordp((p-1)!+1,p) %p A283149 end proc: %p A283149 map(f, [$1..200]); # _Robert Israel_, Apr 29 2021 %t A283149 Table[With[{p = Prime@ n}, SelectFirst[Reverse@ Range@ 10, Mod[(p - 1)!, #] == # - 1 &[p^#] &]], {n, 105}] (* _Michael De Vlieger_, Aug 20 2017 *) %o A283149 (PARI) a(n) = my(p=prime(n), k=1); while(Mod((p-1)!, p^k)==-1, k++); k-1 %Y A283149 Cf. A002068, A007540. %K A283149 nonn %O A283149 1,3 %A A283149 _Felix Fröhlich_, Mar 01 2017 %E A283149 More terms from _Antti Karttunen_, Aug 20 2017