cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A283157 Smallest even numbers with strictly increasing number of preimages under the sum-of-proper-divisors function.

Original entry on oeis.org

2, 4, 6, 40, 106, 314, 1954, 2234, 2794, 11194, 22394, 58234, 111994, 160154, 291194, 425594, 560554, 1022554, 1455994, 1601594, 3203194, 11703994, 16743994, 21781754, 24751994, 53253194, 60860794, 79587194, 95295194, 181060874, 287123194, 435635194, 973772794
Offset: 1

Views

Author

Anton Mosunov, Mar 01 2017

Keywords

Comments

Let sigma(n) denote the sum of divisors function, and s(n):=sigma(n)-n. Let r(n) denote the number of solutions to n=s(m) and put a(1):=2. a(2) is equal to the smallest number such that r(a(2)) > r(a(1)). a(3) is equal to the smallest number such that r(a(3)) > r(a(2)), and so on.
Pomerance proved that, for every e > 0, the number of solutions to n = s(m) when n is even is O_e(n^{2/3+e}).
There are 49 elements in this sequence which do not exceed 2^40. The largest element, 690100611194, has 139 preimages.

Examples

			a(1)=2, because 2=s(m) has 0 solutions;
a(2)=4, because 4=s(9);
a(3)=6, because 6=s(6)=s(25);
a(4)=40, because 40=s(44)=s(74)=s(81);
a(5)=106, because 106=s(80)=s(104)=s(110)=s(206);
a(6)=314, because 314=s(370)=s(406)=s(442)=s(622)=s(313^2);
a(7)=1954, because 1954=s(1856)=s(1952)=s(2216)=s(2702)=s(3014)=s(3902);
a(8)=2234, because 2234=s(2536)=s(2770)=s(3454)=s(3562)=s(3706)=s(3886)=s(3922);
a(9)=2794, because 2794=s(3176)=s(3716)=s(3470)=s(3878)=s(4334)=s(4658)=s(4958)=s(4982)=s(5582).
		

Crossrefs

Programs

  • PARI
    v=vectorsmall(10^8);
    for(n=2,#v,t=(sigma(n)-n)/2;if(denominator(t)==1 && t<=#v, v[t]++))
    r=0;for(n=1,#v, if(v[n]>r,r=v[n];print1(2*n", "))) \\ Charles R Greathouse IV, Mar 02 2017

Extensions

a(20)-a(25) from Charles R Greathouse IV, Mar 02 2017
a(26)-a(31) from Anton Mosunov, Mar 03 2017
a(32)-a(49) from Anton Mosunov, Apr 20 2017