cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A283160 Numbers k such that there is exactly one solution to the equation sigma(x) = 2^k, where sigma(x) denotes the sum of the divisors of x.

Original entry on oeis.org

0, 2, 3, 8, 9, 13, 14, 16, 465, 467, 468, 472, 473, 478, 479, 481, 521, 523, 524, 529, 530, 534, 535, 537, 1072, 1074, 1075, 1079, 1080, 1085, 1086, 1088, 1128, 1130, 1131, 1136, 1137, 1141, 1142, 1144, 1744, 1746, 1747, 1751, 1752, 1757, 1758, 1760, 1800, 1802, 1803, 1808, 1809, 1813, 1814
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Mar 01 2017

Keywords

Comments

Numbers n such that there is a unique subset S of the Mersenne exponents A000043 summing to n. - Charles R Greathouse IV, Mar 07 2017

Examples

			8 is in this sequence that k = 217 is the only number having sigma(k) = 2^8.
		

Crossrefs

Programs

  • Mathematica
    With[{e = MersennePrimeExponent[Range[16]]}, Select[Range[0, e[[-1]]], SeriesCoefficient[Series[Product[1 + x^e[[i]], {i, 1, Length[e]}], {x, 0, #}], #] == 1 &]] (* Amiram Eldar, Dec 20 2024 *)
  • PARI
    is(n)=my(N=2^n,s); for(k=1,N, if(sigma(k)==N && s++>1, return(0))); s \\ Charles R Greathouse IV, Mar 07 2017
    
  • PARI
    list(lim)=my(v=List(),M=[2,3,5,7,13,17,19,31,61,89,107,127,521,607,1279,2203,2281,3217,4253,4423,9689,9941,11213,19937,21701,23209,44497,86243,110503,132049,216091,756839,859433,1257787,1398269,2976221,3021377,6972593,13466917,20996011,24036583,25964951,30402457,32582657,37156667], x='x,P); if(lim>M[#M], error("Need more Mersenne exponents to compute further")); M=select(p->p<=lim,M); P=prod(i=1,#M,1+x^M[i],O(x^(lim\1+1))+1); for(i=0,lim, if(polcoeff(P,i)==1, listput(v,i))); P=0; Vec(v) \\ Charles R Greathouse IV, Mar 07 2017

Formula

A063883(a(n)) = 1.

Extensions

a(9)-a(55) from Charles R Greathouse IV, Mar 07 2017