cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A283164 Expansion of exp( Sum_{n>=1} -sigma(6*n)*x^n/n ) in powers of x.

This page as a plain text file.
%I A283164 #15 Mar 05 2017 03:00:45
%S A283164 1,-12,58,-133,95,194,-418,97,325,-99,-238,169,-217,131,190,-145,441,
%T A283164 -647,169,-527,72,1129,313,-972,2,-491,-565,1944,-1175,-216,972,863,
%U A283164 -1259,288,0,-1155,-1355,-207,2925,1753,1402,-2387,-2257,-1030,315,432,-72,1621,358
%N A283164 Expansion of exp( Sum_{n>=1} -sigma(6*n)*x^n/n ) in powers of x.
%H A283164 Seiichi Manyama, <a href="/A283164/b283164.txt">Table of n, a(n) for n = 0..1000</a>
%F A283164 G.f.: Product_{n>=1} (1 - x^n)^12 * (1 - x^(6*n))/((1 - x^(2*n))^4 * (1 - x^(3*n))^3).
%F A283164 a(n) = -(1/n)*Sum_{k=1..n} sigma(6*k)*a(n-k). - _Seiichi Manyama_, Mar 04 2017
%Y A283164 Cf. A224613 (sigma(6*n)), A283119 (exp( Sum_{n>=1} sigma(6*n)*x^n/n )).
%Y A283164 Cf. exp( Sum_{n>=1} -sigma(k*n)*x^n/n ): A115110 (k=2), A185654 (k=3), A283163 (k=4), A282937 (k=5), this sequence (k=6), A282942 (k=7), A283168 (k=8), A283169 (k=9).
%K A283164 sign
%O A283164 0,2
%A A283164 _Seiichi Manyama_, Mar 02 2017