A283183 Number of partitions of n into a prime and a square of an arbitrary integer.
0, 1, 3, 2, 1, 4, 3, 2, 2, 0, 5, 4, 1, 4, 2, 2, 3, 4, 3, 4, 4, 2, 5, 2, 0, 2, 6, 4, 3, 4, 1, 6, 4, 0, 4, 2, 1, 8, 4, 2, 5, 4, 3, 4, 4, 2, 7, 4, 2, 2, 4, 4, 5, 6, 2, 6, 4, 0, 5, 4, 1, 8, 4, 0, 4, 6, 5, 8, 4, 2, 5, 6, 3, 2, 6, 2, 8, 4, 3, 6, 2, 2, 11, 6, 0, 6, 6
Offset: 1
Examples
a(11) = 5 because 11 = 11 + 0^2 = 7 + (-2)^2 = 7 + 2^2 = 2 + (-3)^2 = 2 + 3^2.
Links
- Anton Mosunov, Table of n, a(n) for n = 1..10000
- H. Li, The exceptional set for the sum of a prime and a square, Acta Math. Hung., 99:123 (2003), 123-141.
- R. J. Miech, On the equation n=p+x^2, Trans. of the AMS, 130:3 (1968), 494-512.
- A. Nayebi, Upper bounds on the solutions to n=p+m^2, Bull of the Iran. Math. Soc., 37:4 (2011), 95-108.
- W. Tianze, On the exceptional set for the equation n=p+k^2, Acta Math. Sinica, 11:2 (1995), 156-167.
Programs
-
Mathematica
a[n_] := Boole@ PrimeQ[n] + 2 Length@ Select[n - Range[Sqrt@ n]^2, PrimeQ]; Array[a, 87] (* Giovanni Resta, Apr 09 2017 *)
-
PARI
local(i,j,k,total); for (i=1, 1000, j=1; k=1; total=isprime(i); while (j <= i, total += 2*isprime(i-j); j += (2*k+1); k++); print1(total, ", ")) \\ Anton Mosunov, Apr 09 2017
Comments