This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A283207 #62 Jun 28 2020 11:13:54 %S A283207 2,2,4,4,4,4,4,4,4,4,4,8,6,4,6,6,4,8,6,6,8,6,6,8,8,8,8,8,8,8,8,8,8,8, %T A283207 8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8, %U A283207 8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8 %N A283207 a(n) = a(floor(n/a(n-1))) + a(floor(n/a(n-2))) with a(1) = a(2) = 2. %C A283207 For the first 10^6 terms, the maximum value of a(n) is 64 and the values of b(n) = least k such that a(k) = 2*n are 1, 3, 13, 12, 105, 97, 126, 96, 1681, 1552, 1746, 1537, 1734, 1926, 4050, 1536, 53793, 49665, 53890, 49185, 53862, 57024, 55616, 49153, 55488, 55302, 81249, 61446, 83619, 115214, 162000, 49152; note that b(2^n) = 3*2^((n+2)*(n-1)/2) for n = 1 to 5. %C A283207 This sequence is a_{1,2}(n) where a_{r,s}(n) = a_{r,s}(floor(n/a_{r,s}(n-r))) + a_{r,s}(floor(n/a_{r,s}(n-s))) with a_{r,s}(n) = 2 for n <= s (r < s). - _Altug Alkan_, Jun 28 2020 %H A283207 Altug Alkan, <a href="/A283207/b283207.txt">Table of n, a(n) for n = 1..10000</a> %H A283207 Altug Alkan, <a href="/A283207/a283207_1.png">Alternative Graph of A283207</a> %H A283207 Altug Alkan, <a href="/A283207/a283207_3.png">Line plot of (a(floor(n/a(n-1))), a(floor(n/a(n-2)))) for n <= 2^15</a> %H A283207 Rémy Sigrist, <a href="/A283207/a283207_2.png">Scatterplot of the first 2^34 terms</a> %H A283207 Rémy Sigrist, <a href="/A283207/a283207_4.png">Line plot of (a(floor(n/a(n-1))), a(floor(n/a(n-2)))) for n <= 12855108032</a> %e A283207 a(5) = 4 because a(5) = a(floor(5/a(4))) + a(floor(5/a(3))) = a(floor(5/4)) + a(floor(5/4)) = a(1) + a(1) = 4. %p A283207 A:= Vector(100): %p A283207 A[1]:= 2: A[2]:= 2: %p A283207 for n from 3 to 100 do A[n]:= A[floor(n/A[n-1])] + A[floor(n/A[n-2])] od: %p A283207 convert(A,list); # _Robert Israel_, Jun 23 2020 %t A283207 a[1] = a[2] = 2; a[n_] := a[n] = a[Floor[n/a[n - 1]]] + a[Floor[n/a[n - 2]]]; Array[a, 120] (* _Michael De Vlieger_, Mar 06 2017 *) %o A283207 (PARI) a=vector(100); a[1]=a[2]=2; for(n=3, #a, a[n]=a[n\a[n-1]]+a[n\a[n-2]]); a %o A283207 (Python) %o A283207 from functools import lru_cache %o A283207 @lru_cache(maxsize=None) %o A283207 def A283207(n): %o A283207 return 2 if n <= 2 else A283207(n//A283207(n-1)) + A283207(n//A283207(n-2)) # _Chai Wah Wu_, Jun 23 2020 %Y A283207 Cf. A005185, A130535. %K A283207 nonn %O A283207 1,1 %A A283207 _Altug Alkan_, Mar 03 2017