This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A283222 #10 Mar 21 2017 06:34:11 %S A283222 66,6810,182430,105470250,17356640970,678676246650,1879504308930, %T A283222 4491035717130,10618004862030,21136679055030,23751520478010, %U A283222 27081671511090,27596192489190,31721097756750,115248550935750,133303609919430,140838829659930,182797297112430,197799116497230 %N A283222 Integer area of integer-sided triangle such that the sides are of the form p, p+2, 2(p-1), where p, p+2 and (p-1)/2 are prime numbers. %C A283222 Subsequence of A257049. %C A283222 The area of a triangle (a,b,c) is given by Heron's formula A = sqrt(s(s-a)(s-b)(s-c)) where its side lengths are a, b, c and semiperimeter s = (a+b+c)/2. %C A283222 We observe that the sides of each triangle are of the form (k^2+2, k^2+4, 2k^2+2) and Heron's formula gives immediately the area k(2k^2+4) => a(n)= 2*A086381(n)*A253639(n). %C A283222 The corresponding primes p are a subsequence of A056899 (primes of the form n^2+2): 11, 227, 2027, 140627, 4223027, 48650627, 95942027, 171479027, ... %C A283222 We observe that p == 11 mod 72, or p == 11, 83 mod 144. For p>11, p == 27, 227, 627 mod 1000. %C A283222 An interesting property: the greatest prime divisor of a(n) is equal to p. For instance, the prime divisors of 6810 are {2, 3, 5, 227} => p = 227 is the length of the smallest side of the triangle (227, 229, 452). %C A283222 The following table gives the first values of A, the sides of the triangles and the primes (p-1)/2. %C A283222 +-----------+--------+--------+--------+---------+ %C A283222 | A | p | p+2 | 2(p-1)| (p-1)/2 | %C A283222 +-----------+--------+--------+--------+---------+ %C A283222 | 66 | 11 | 13 | 20 | 5 | %C A283222 | 6810 | 227 | 229 | 452 | 113 | %C A283222 | 182430 | 2027 | 2029 | 4052 | 1013 | %C A283222 | 105470250 | 140627 | 140629 | 281252 | 70313 | %C A283222 +-----------+--------+--------+--------+---------+ %F A283222 a(n) == 6 mod 30. %e A283222 66 is in the sequence because the area of the triangle (11, 13, 20) is given by Heron's formula with s = 22 and A = sqrt(22(22-11)(22-13)(22-20)) = 66. The numbers 11, 13 and 5 = (11-1)/2 are primes. %p A283222 nn:=100000: %p A283222 for n from 1 by 2 to nn do: %p A283222 if isprime(n^2+2) and isprime(n^2+4) and isprime((n^2+1)/2) %p A283222 then %p A283222 printf(`%d, `,n*(2*n^2+4)): %p A283222 else %p A283222 fi: %p A283222 od: %t A283222 nn=10000;lst={};Do[s=(2*Prime[c]-2+Prime[c+1]+Prime[c])/2;If[IntegerQ[s],area2=s (s-2*Prime[c]+2)(s-Prime[c+1])(s-Prime[c]); If[area2>0&&IntegerQ[Sqrt[area2]] &&Prime[c+1] ==Prime[c]+2 && PrimeQ[(Prime[c]-1)/2], AppendTo[lst,Sqrt[area2]]]], {c,nn}];Union[lst] %o A283222 (PARI) lista(nn) = {forprime(p=2, nn, if (isprime(p+2) && isprime((p-1)/2), ca = p; cb = p+2; cc = 2*(p-1); sp = (ca+cb+cc)/2; a2 = sp*(sp-ca)*(sp-cb)*(sp-cc); if (issquare(a2), print1(sqrtint(a2), ", "));););} \\ _Michel Marcus_, Mar 04 2017 %Y A283222 Cf. A056899, A085554, A086381, A188158, A253639, A257049. %K A283222 nonn %O A283222 1,1 %A A283222 _Michel Lagneau_, Mar 03 2017