cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A283242 Expansion of exp( Sum_{n>=1} -sigma_2(2*n)*x^n/n ) in powers of x.

This page as a plain text file.
%I A283242 #14 Mar 04 2017 11:13:18
%S A283242 1,-5,2,15,12,-36,-92,-17,167,358,283,-293,-1321,-2012,-1101,2299,
%T A283242 7296,10505,6901,-7705,-31240,-52490,-51336,-6032,91521,217064,303776,
%U A283242 250595,-36282,-575622,-1234465,-1684515,-1448538,-66980,2610835,6087681,8990575
%N A283242 Expansion of exp( Sum_{n>=1} -sigma_2(2*n)*x^n/n ) in powers of x.
%H A283242 Seiichi Manyama, <a href="/A283242/b283242.txt">Table of n, a(n) for n = 0..1000</a>
%F A283242 a(n) = -(1/n)*Sum_{k=1..n} sigma_2(2*k)*a(n-k). - _Seiichi Manyama_, Mar 04 2017
%Y A283242 Cf. A283224 (exp( Sum_{n>=1} sigma_2(2*n)*x^n/n )).
%Y A283242 Cf. exp( Sum_{n>=1} -sigma_k(2*n)*x^n/n ): A115110 (k=1), this sequence (k=2).
%Y A283242 Cf. exp( Sum_{n>=1} -sigma_2(m*n)*x^n/n ): A073592 (m=1), this sequence (m=2), A283243 (m=3).
%K A283242 sign
%O A283242 0,2
%A A283242 _Seiichi Manyama_, Mar 03 2017